MECHANICAL AND AEROSPACE ENGINEERING

No other professions unleash the spirit of innovation like Mechanical Engineering and Aerospace Engineering. From research to real-world applications, mechanical and aerospace engineers discover how to improve lives by creating bold new solutions that connect science to life in unexpected, forward-thinking ways. Few have such a direct and positive effect on everyday lives, and we count on mechanical and aerospace engineers, and their imaginations, to help us meet the needs of the 21st century.

Mechanical and aerospace engineers know that life takes engineering, and that their disciplines provide freedom to explore, shape the future, encompass an enterprising spirit, and call for limitless imagination.

Engineering makes a world of difference and is essential to our health, happiness and safety. Creative problem solving, while turning dreams into reality, is the core of Mechanical and Aerospace Engineering. These professional disciplines involve the invention, design and manufacture of devices, machines and systems that serve the ever-changing needs of modern society.

Mechanical engineering is an exceedingly diverse field that spans an exceptionally wide range of systems, devices and vehicles. Mechanical engineers are vitally concerned with all forms of energy production, utilization and conservation. They are the key professionals in bringing about the green revolution, finding ways to reduce or eliminate pollution, minimize waste, reduce energy usage, and re-use waste, scrap and recycled goods. They deal with everything mechanical and energy-consuming, whether small or large, simple or complex—from fuel cells to nuclear power plants, gas turbine engines to interplanetary space vehicles, artificial limbs to life support systems, robotic manipulators to complex automatic packaging machines, precision instruments to construction machinery, household appliances to mass transit systems, heating and air-conditioning systems to off-shore drilling platforms, and powered home and garden appliances to vehicles of all types. In virtually every organization where engineers are employed, mechanical engineers will be found.

The BS degree program in mechanical engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. Premedical, petroleum, and fire protection options are offered for the BS degree in mechanical engineering.

Aerospace engineering is concerned with the science and technology of flight, and the design of air, land and sea vehicles for transportation and exploration. This exciting field has led people to the moon and continues to lead in the expansion of frontiers deeper into space and into the ocean's depths. Because of their unique backgrounds in aerodynamics and lightweight structures, aerospace engineers are becoming increasingly involved in solving some of society's most pressing and complex problems, such as high-speed ground transportation and pollution of the environment.

The BS degree program in aerospace engineering is accredited by the Engineering Accreditation Commission of the ABET, http://www.abet.org, under the criteria for aerospace and similarly named engineering programs.

MAE Mission

The mission of the School of Mechanical and Aerospace Engineering is to create a vibrant and stimulating learning and research environment and to instruct and encourage our students to reach their full potential in technical expertise, innovative expression, intellectual curiosity, and collaborative design.

MAE Mission for Undergraduate Instruction

The School of Mechanical and Aerospace Engineering will support the MAE and CEAT missions and the mission for instruction of Oklahoma State University by providing a first-class education to students that is grounded in engineering fundamentals. The Faculty of MAE are committed to preparing engineers who are:

- Competitive nationwide and internationally for employment opportunities and who will become respected achievers within their discipline.
- Well-prepared for the pursuit of advanced studies at any university.
- Prepared for a lifetime of continuing development, which is demanded by disciplines involved with rapidly progressing technology.

Rigor

The mechanical and aerospace engineering programs are among the most rigorous in the college, requiring broad knowledge and application of mathematics and the engineering sciences in addition to specialized knowledge and application of mechanical and aerospace engineering theory and design. The programs culminate in an intensive one-semester capstone design and rapid prototyping experience.

Program Educational Objectives

Program educational objectives are statements that describe the expected accomplishments and professional status of mechanical and aerospace engineering graduates three to five years beyond the baccalaureate degree. The School of Mechanical and Aerospace Engineering at Oklahoma State University is dedicated to graduating mechanical and aerospace engineers who:

1. Our graduates will be recognized leaders with exemplary careers to the greater benefit of society.
2. Our graduates will strive to acquire new skills and knowledge throughout their careers and will earn a reputation as responsible and ethical professionals.
3. Our graduates will be collaborative innovators who adapt to changing professional and societal norms with wisdom and integrity.

Student Outcomes

The student outcomes for students graduating from the mechanical and aerospace engineering BS programs are:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Because mechanical engineering is perhaps the broadest of all engineering disciplines, the program provides not only excellent grounding in all engineering fundamentals, but also allows some flexibility in selecting controlled technical electives to suit the student's interests. In this selection, no one area may be unduly emphasized at the expense of another. For the aerospace engineering, petroleum, fire protection and premedical programs, prescribed coursework provides students with more focused development. Graduates are fully competent as mechanical or aerospace engineers, with abilities in design, and in-depth knowledge in their areas of concentration.

As a fundamental component of all BS programs, engineering design is strongly emphasized in the junior and senior years but is integrated throughout the curriculum. Most MAE courses at the 3000- and 4000-levels include some design content, ranging from a minimum of one-half to a maximum of four credit hours of design content. Each junior and senior level course builds upon the preceding mechanical and aerospace engineering courses to develop in the student the ability to identify and solve meaningful engineering problems. The coursework is specifically sequenced and interrelated to provide design experience at each level, leading to progressively more complex, open-ended problems. The coursework includes sensitizing students to socially-related technical problems and their responsibilities as engineering professionals to behave ethically and protect occupational and public safety. The program culminates in a senior-year design course in which students integrate analysis, synthesis and other abilities they have developed throughout the earlier portions of their study into a capstone experience. The design experiences include the fundamental elements and features of design with realistic constraints such as economics, safety, reliability, social and environmental impact, and other factors. At this point, students are able to design components, systems and processes that meet specific requirements, including such pertinent societal considerations as ethics, safety, environmental impact and aesthetics. Students develop and display the ability to design and conduct experiments essential to specific studies and to analyze experimental results to draw meaningful conclusions.

An integral part of this educational continuum, from basic science through comprehensive engineering design, are learning experiences that facilitate the students’ abilities to function effectively in both individual and team environments. The program also provides every graduate with adequate learning experiences to develop effective written and oral communication skills. State-of-the-art computational tools are introduced and used as a part of their problem-solving experiences. Finally, the students' experience in solving ever-more-challenging problems gives them the ability to continue to learn independently throughout their professional careers.

The broad background and problem-solving ability of mechanical and aerospace engineers make them suited to engage in one or more of the following activities: research, development, design, production, operation, management, technical sales and private consulting. Versatility is their trademark. A bachelor's degree in mechanical or aerospace engineering is also an excellent background for entering other professional schools such as medicine, dentistry, law or business (MBA). The premedical option in mechanical engineering is available for students wishing to enroll in medical school.

In the junior and senior years of the program, mechanical and aerospace engineering students extend their study of the engineering sciences and consider applications of fundamental principles and analysis tools to the solution of real technological problems of society. Some design courses involve students in the solution of authentic, current and significant engineering problems provided by industrial firms. Students may also help smaller firms that need assistance with the development of new products.

The student designs, with the guidance of an advisor, an individualized program of study consistent with his or her interests and career plans. Some students terminate their studies with a bachelor’s degree, while others receive one of several graduate degrees.