Industrial engineering and management focuses on production systems that produce goods or provide services for customers. Industrial engineers define, design, build, operate and improve production processes that convert resources to high quality products or services effectively, efficiently and safely.

People are the fundamental component of production systems. People provide the creativity and leadership essential to make things happen. Hence, industrial engineering is the most people-oriented discipline within the engineering family. Industrial engineers are trained to think in both broad and specific terms. Practicing industrial engineers understand business parameters as well as physical and social parameters within production systems. This breadth allows industrial engineers to function effectively in a wide spectrum of activities ranging from strategic business planning to detailed task design. The wide-angle vision of industrial engineering provides career flexibility, leading to high-level leadership or specialized technical responsibilities.

Industrial engineers are employed in manufacturing organizations (e.g., automotive, electronics, food, and medical manufacturers), service enterprises (e.g., airlines, banks, consulting groups, hospitals, retail companies, theme parks, transportation companies, warehouses) and governmental organizations (e.g., public service and regulatory organizations).

Vision

To inspire and empower our students to become leaders in a wide variety of industries, improve the quality of life for humankind, and change the world for the better, by making societal systems diverse, effective, efficient, and sustainable.

Mission

Continuously and aggressively advance educational and research processes which will attract students who fulfill our vision.

Core Values

Faculty, students and staff work together to build and maintain a learning/mentoring environment where:

- Innovative practices are developed, tested and validated.
- Knowledge and practices are shared.
- Each individual develops to his/her full potential.
- Professional ethics are practiced at all times.

Educational Objectives and Outcomes

Within a few years after graduation, Industrial Engineering program graduates will become professionals, managers or leaders in a wide variety of industries and apply discovery, problem-solving, leadership and management skills for the benefit of their organization and society at large.

Student Learning Outcomes

Graduating baccalaureate students possess an understanding of fundamental industrial engineering and management concepts, methodologies and technologies as demonstrated by:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The curriculum consists of three primary parts:

1. general studies,
2. core engineering, and
3. professional school topics.

General studies consist of courses such as mathematics, statistics, chemistry, physics, English, behavioral science, history, humanities and arts. Core engineering courses consist of engineering sciences such as materials, statics, electrical circuits, fluid mechanics and thermodynamics. Professional school courses consist of topics such as systems thinking and analysis in engineering, economic analysis, manufacturing processes, computer-aided modeling, work analysis, operations research, quality control, experimental design, facility location and layout, management and leadership, production control, system simulation modeling, information systems, ergonomics and human factors, and energy and water management. A capstone design experience, working with a real-world organization, integrates classroom and lab work together in the senior year. Details regarding degree requirements are available in the Undergraduate Programs and Requirements publication.

The IEM program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

Each IEM student, along with the faculty advisor, develops an individual plan of study that guides the student through the curriculum. Coursework is sequenced and interrelated to provide theoretical and applied knowledge, along with hands-on laboratory and project experience. Students work as individuals and as teams to integrate and apply mathematical, scientific, and engineering knowledge and concepts in order to address both traditional academic questions as well as open-ended design and analysis challenges. Instruction in experimental methods is integrated in the curriculum through the design, execution,
analysis and interpretation of experiments. Project work is used to
develop both technical and communications skills. Technical skills are
used to identify, formulate and address engineering problems, both
simple and complex. Communications skills are developed and practiced
in written, oral and team interaction formats.

The means to define and design detailed solutions to address customer
needs from a system-wide perspective is introduced in the sophomore
year, and reinforced through the capstone senior design project.
Additionally, global perspectives or production systems are introduced
and emphasized in the sophomore year so that students understand
the nature of global customer bases as well as global competition early
in their studies. The curriculum is continually updated to assure that
contemporary issues, thinking and tools are integrated in course content
as well as instructional delivery. Professional responsibility and ethical
behavior are introduced and reinforced throughout the curriculum.
Additionally, the need for life-long learning after graduation is stressed.

Students are offered opportunities to enhance their classroom and
laboratory experiences through student organizations such as the
student chapter of APICS, the Institute of Industrial and Systems
Engineers, the Institute for Operations Research and the Management
Sciences, and the American Society for Quality. Outstanding scholars
are recognized by Alpha Pi Mu, the national honor society for industrial
engineering students. Additionally, opportunities for internship and
coop experiences are offered to IEM students so that they can gain
professional experience during their collegiate program. Please visit our
Internet site http://iem.okstate.edu for more
information.