**CHEMICAL ENGINEERING**

Chemical engineers use knowledge of how nature works (science) and the language of science (mathematics) to create value and solve difficult problems for the benefit of society. The key skill that differentiates chemical engineering from other disciplines is the ability to understand, design and operate transformation (physical or chemical) processes. Chemical engineers literally change (transform) the world. Many in the public assume chemical engineers work only in chemical plants and petroleum refineries. The reality is that chemical engineers work in a broad range of industries including pharmaceuticals, biochemicals, semiconductor materials, foods, plastics, paper, steel, consumer goods, automotive, specialty materials, oil & gas production, renewable energy, engineering services, and the list goes on. Key to providing a benefit to society, chemical engineers are responsible for resource conservation, minimizing pollution, minimizing costs, and maximizing quality and safety of processes that make the products.

The emphasis on the molecular or chemical nature of everything people use is what makes chemical engineers different from other engineers. The emphasis on the processes that make the products is what makes chemical engineers different from chemists.

Chemical engineers often find themselves defining a problem or product, developing a process to do what is needed, and then designing the equipment to carry out the process. After the installation, chemical engineers commonly manage operations, oversee equipment maintenance and supervise control of product quality. They troubleshoot problems that hinder smooth operations, and they plan for future expansions or improvements. Their training and knowledge make them well qualified to market products and processing equipment. The varied background and experience of chemical engineers make them ideally suited for advancement into top-level managerial and executive positions. An advanced degree in chemical engineering is not required.

Many who aspire to careers in medicine or law first obtain BS degrees in chemical engineering. The rigor of the program and the emphasis on critical thinking and analytical reasoning are highly valued by professional school admission committees. A career as a research scientist or academic typically requires a PhD degree.

**Program Educational Objectives**

The School has three broad objectives. Within the first few years after graduation, our BS graduates will have demonstrated:

1. **Competencies** – skill in tools and techniques that are fundamental to the job, many of which need to be learned after graduation.
2. **Professionalism** – partnership in the mission and within the human context of the enterprise - ethics, effectiveness, and awareness of the broad context of the detailed work.
3. **Balance** – a wise self-direction to life, community, health and self-view that finds the right balance between personal choices, which energizes self and others and enables effectiveness in relationships with others.

The goal of the BS degree program is to produce graduates who possess broad-based knowledge, skills and judgment that prepares them to succeed in the profession of engineering or in further studies at the graduate level, including medical school. To achieve this goal, the program is designed to progressively develop both technical and human skills.

In the pre-professional portion of the chemical engineering program (usually equivalent to two years of study), the focus is on the underlying scientific and mathematical principles of engineering, supplemented by appropriate general education courses in English, social sciences and humanities. Students who demonstrate proficiency in this portion of the program are eligible for admission to the professional school.

The curriculum in the professional school (typically the last two years) builds systematically upon the scientific knowledge acquired in the pre-professional curriculum. In professional school, students have the opportunity to focus in one of three emphasis areas:

1. the regular course prepares a graduate for a wide range of employment opportunities;
2. the pre-medical option is for those who wish preparation for medical school; and
3. the biomedical/biochemical option is for those who seek employment in bio-related professions.

Each emphasis area is accredited under the basic level EAC-ABET criteria for chemical engineering programs and each prepares a student for success in both employment and graduate study at OSU or other universities. A more complete description of exact degree requirements for the bachelor’s-level curricula is given in the publication Undergraduate Programs and Requirements at OSU.

Each professional school course builds upon the preceding chemical engineering courses to develop the ability to identify and solve meaningful engineering problems. The coursework is specifically sequenced and interrelated to provide design experience at each level, leading to progressively more complex, open-ended problems. The coursework includes sensitizing students to socially-related technical problems and their responsibilities as engineering professionals to behave ethically and protect occupational and public safety. The program culminates in the senior-year design courses in which the students integrate the analysis, synthesis and other abilities they have developed throughout the earlier portions of their study into a capstone experience. At this point, students will be able to design components, systems and processes that meet specific requirements, including such pertinent societal considerations as ethics, safety, environmental impact and aesthetics. The students will have developed and displayed the ability to design and conduct experiments essential to specific studies, and to analyze the experimental results and draw meaningful conclusions within an enterprise context.

Integral parts of this educational continuum from basic science through comprehensive engineering design are learning experiences that facilitate the students’ abilities to function effectively in both individual and collaborative environments. To achieve this, the program provides every student with adequate learning experiences to develop effective written and oral communication skills. State-of-the-art computational tools are introduced and utilized as a part of their problem-solving experiences. Finally, the students’ experience in solving ever-more-challenging problems gives them the ability to continue to learn independently throughout their professional careers.
## Courses

**CHE 2033 Introduction to Chemical Process Engineering**  
**Prerequisites:** (CHEM 1515 and ENSC 2213) and (concurrent enrollment in MATH 2233 or MATH 3263) and concurrent enrollment in ENGR 1412.  
**Description:** Application of mathematics and scientific principles to solving chemical engineering problems. Simple material and energy balances applied to process design. The nature and application of unit operations and unit processes to the development of chemical processes.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3 Other: 0  
**Levels:** Undergraduate  
**Schedule types:** Discussion, Combined lecture & discussion, Lecture  
**Department/School:** Chemical Engineering

**CHE 2581 Chemical Engineering Seminar I**  
**Prerequisites:** CHE majors.  
**Description:** Through guest lectures and home assignments, preparation and planning for a CHE career and success in the CHE curriculum. Professional growth topics oriented to students in the sophomore-level courses.  
**Credit hours:** 1  
**Contact hours:** Lecture: 1  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3013 Rate Operations I**  
**Prerequisites:** Admission to CHE Professional School.  
**Description:** Development and application of phenomenological and empirical models to the design and analysis of fluid processing and heat transfer unit operations.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3113 Rate Operations II**  
**Prerequisites:** CHE 3013, CHE 3333, CHE 3473, admission to CHE Professional School.  
**Description:** Development and application of phenomenological and empirical models to the design and analysis of mass transfer and separations unit operations.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3202 Interdisciplinary Design and Build for Chemical Systems I**  
**Prerequisites:** CEAT major or consent of instructor.  
**Description:** Interdisciplinary design course that provides independent work experience, professional development, and assigned design-build problems.  
**Credit hours:** 2  
**Contact hours:** Lecture: 2  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3211 Interdisciplinary Design and Build for Chemical Systems II**  
**Prerequisites:** CEAT major and CHE 3202 or consent of instructor.  
**Description:** Continuation of CHE 3202. Interdisciplinary design course that provides independent work experience, professional development, and assigned design-build problems.  
**Credit hours:** 1  
**Contact hours:** Lecture: 1  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3333 Introduction to Transport Phenomena**  
**Prerequisites:** Admission to CHE Professional School.  
**Description:** Molecular concepts of mass, momentum, and thermal energy diffusion. Theories and correlations for transport properties of viscosity, thermal conductivity, and diffusivity. Shell balance techniques to derive differential equations of change. Application of ODEs to simple transport phenomena problems. Turbulent flow analysis. Use of CFD software for analysis. Course previously offered as CHE 4333.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3473 Chemical Engineering Thermodynamics**  
**Prerequisites:** Admission to CHE Professional School.  
**Description:** Application of thermodynamics to chemical process calculations. Behavior of fluids, including estimation of properties by generalized methods. Study of chemical thermodynamics, including heats of reaction, chemical reaction, and phase equilibria.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

**CHE 3581 Chemical Engineering Seminar II**  
**Prerequisites:** Junior standing in the department.  
**Description:** Through guest lectures and home assignments, preparation and planning for a CHE career and success in the CHE curriculum. Professional growth topics oriented to students in the junior-level CHE courses.  
**Credit hours:** 1  
**Contact hours:** Lecture: 1  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering
CHE 4002 Chemical Engineering Laboratory I
Prerequisites: CHE 3013, CHE 3333, CHE 3473, admission to CHE Professional School.
Description: Application of CHE fundamentals and unit operation principles to the analysis of bench and pilot-scale equipment. Primarily fluid processing and heat exchange. Design of experiments on non-ideal units to generate credible data useful for validation of principles and for engineering decisions. Interpretation of experimental data and presentation of results.
Credit hours: 2
Contact hours: Lab: 4
Levels: Graduate, Undergraduate
Schedule types: Lab
Department/School: Chemical Engineering

CHE 4073 Introduction to Tissue Engineering
Prerequisites: Senior standing or higher and ENSC 3233 and ENSC 3313 and MATH 2153; or by consent of instructor.
Description: An overview of the principles of tissue engineering and regenerative medicine, including a general understanding of tissue growth and development, and an investigation of the engineering principles needed to design tissues and organs. May not be used for degree credit with CHE 5073.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 4112 Chemical Engineering Laboratory II
Prerequisites: CHE 3113, CHE 3123, CHE 4002, admission to CHE Professional School.
Description: A continuation of CHE 4002. Primary reaction and mass transfer processes.
Credit hours: 2
Contact hours: Lab: 4
Levels: Graduate, Undergraduate
Schedule types: Lab
Department/School: Chemical Engineering

CHE 4124 Chemical Engineering Design I
Prerequisites: CHE 3113, CHE 3123, CHE 4002, and admission to CHE Professional School.
Description: Economic analysis of process plants and systems of equipment; methods for estimating plant investment requirements and operating costs; economic evaluation and optimal design of chemical process systems; basic equipment and process design calculations.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Chemical Engineering

CHE 4133 Introduction to Catalysis and Photocatalysis
Prerequisites: Senior standing or higher and CHE 3123 or consent of instructor.
Description: Molecular level insight into catalysis and photocatalysis from the basics of chemistry and chemical engineering. Topics covered include homogeneous catalysis, heterogeneous catalysis, molecular photocatalysis, and photocatalysis on metals and metal oxides. The rational design of catalysts using first-principle (e.g., density functional theory) calculations is covered. Advancements made in the experimental and computational catalysis fields to convert renewable natural resources such as solar light and cellulosic biomass into electricity, fuels, valuable chemicals and pharmaceuticals. May not be used for degree credit with CHE 5133.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 4224 Chemical Engineering Design II
Prerequisites: CHE 4124 and admission to CHE Professional School.
Description: A continuation of CHE 4124. Economic analysis of process plants and equipment. Design of chemical processing equipment and chemical plants. Application of computer techniques to chemical engineering design.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Chemical Engineering

CHE 4283 Bioprocess Engineering
Prerequisites: Admission to CHE Professional School and CHE 3123 (or instructor consent).
Description: Application of fundamental engineering principles to biochemical and biological processes. Introduction to cellular processes, fermentation technology, biological mass transfer and kinetics, bioreactor design and scale-up and downstream processing. Same course as BAE 4283.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 4293 Biomedical Engineering
Prerequisites: ENSC 2213, ENSC 3233, MATH 2155.
Description: Introduction to engineering principles applied to biomedical applications. Biomaterials, drug delivery, artificial organs, transport in biological systems, tissue engineering and modeling of biological systems.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Chemical Engineering
CHE 4343 Environmental Engineering  
**Prerequisites:** CHE 4123.  
**Description:** Application of science and engineering principles to minimize the adverse effects of human activities on the environment. National and state environmental regulations. Predictive movement and fate of chemicals in the geospheres. Multi-media pollution assessment, analysis and control. Consideration of safety, health and environmental issues from a process standpoint.  
**Credit hours:** 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4493 Introduction to Molecular Modeling and Simulation  
**Prerequisites:** Senior standing or higher and any one of the following courses – CHE 3473, CHEM 3433, CHEM 3553, MAE 3223, MAE 5683, MAE 5693, BIOC 3223 or consent of instructor.  
**Description:** Theory of statistical mechanics and its application to computing thermodynamic, transport and phase equilibria properties of fluids. Modeling of matter at molecular level and atomistic simulation methods such as Monte Carlo and molecular dynamics. Quantum calculation of thermodynamics for industrially relevant reactions. Software used: Cassandra, Gromacs, LAMMPS, and Gaussian. May not be used for degree credit with CHE 5493.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4523 Introduction to Colloid Processing  
**Prerequisites:** MATH 2153 and CHEM 1515.  
**Description:** The physics and chemistry governing the behavior of microscopic particles in dilute and concentrated suspensions. Interparticle interaction influence on viscosity, viscoelasticity, yield stress, and shear thinning. Practical applications of colloids principles in industrial practice. No credit for students with credit in CHE 5523. Same course as MSE 4523.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4581 Chemical Engineering Seminar III  
**Prerequisites:** Senior standing in the department.  
**Description:** Through guest lectures and home assignments, preparation and planning for a Che career and success in the Che curriculum. Professional growth topics oriented to students in the senior-level Che courses.  
**Credit hours:** 1  
**Contact hours:** Lecture: 1  
**Levels:** Graduate, Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4603 Introduction to Membrane Separations  
**Prerequisites:** Senior standing or higher and CHE 3113 or consent of instructor.  
**Description:** Basic principles of membrane technology. Membrane synthesis processes and molecular separation mechanisms for different types of membranes. General overview of many different membrane processes. Basic transport equations and fundamental concepts with examples and industrial applications. Includes a project/discussion for a membrane reactor model. May not be used for degree credit with CHE 5603.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4753 Introduction to Applied Numerical Computing for Scientists and Engineers  
**Prerequisites:** Senior standing or higher, and MATH 2233 or MATH 3263, and knowledge of programming, or consent of instructor.  
**Description:** Practical software tools for computational problem solving in science and engineering: version control (e.g., Git), mathematical typesetting (e.g., LaTeX), graphical user interfaces, and high level program languages with libraries of solvers and visualization tools (e.g., Python and MATLAB). Application of numerical computing methods to solve systems of differential and algebraic equations and to estimate model parameters using optimization. May not be used for degree credit with CHE 5753.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4773 Introduction to Computational Fluid-Particle Dynamics  
**Prerequisites:** Senior standing or higher and CHE 3333 or consent of instructor.  
**Description:** Computational fluid-particle dynamics (CFPD) modeling strategies and simulation of multiphase flow transport phenomena such as particle tracking, deposition, reaction, and erosion. Detailed flow visualization using multiphase flow models on ANSYS CFX and Fluent platforms. Application of numerical techniques to simulate processes defined by first-principles. Application of CFD for drug formulation optimization, lung aerosol dynamics, separation processes, reactions in stirred tanks and plug flow reactors. May not be used for degree credit with CHE 5773.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering  

CHE 4843 Chemical Process Instrumentation and Control  
**Prerequisites:** CHE 4124 and admission to CHE Professional School.  
**Description:** Process instrumentation for measurement and control. Process dynamics and modeling. Linearization. Classical control system analysis and design. Tuning. Communication through block diagrams and P&IDs.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate, Undergraduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering
CHE 4990 Special Problems  
**Prerequisites:** Senior standing.  
**Description:** Training in independent work, study of relevant literature, and experimental investigation of an assigned problem. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.  
**Credit hours:** 1-5  
**Contact hours:** Other: 1  
**Levels:** Undergraduate  
**Schedule types:** Independent Study  
**Department/School:** Chemical Engineering

CHE 5000 Master's Thesis  
**Prerequisites:** Approval of major professor.  
**Description:** Methods used in research and thesis writing. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.  
**Credit hours:** 1-6  
**Contact hours:** Other: 1  
**Levels:** Graduate  
**Schedule types:** Independent Study  
**Department/School:** Chemical Engineering

CHE 5030 Professional Practice  
**Prerequisites:** Senior standing and consent of instructor.  
**Description:** Application of chemical engineering principles to the solution of real-life engineering problems in an actual or simulated industrial environment. Includes application of design and testing procedures, economic evaluation and reporting on one or more assigned projects. Offered for variable credit, 2-6 credit hours, maximum of 8 credit hours.  
**Credit hours:** 2-6  
**Contact hours:** Other: 2  
**Levels:** Graduate  
**Schedule types:** Independent Study  
**Department/School:** Chemical Engineering

CHE 5073 Tissue Engineering  
**Prerequisites:** Graduate standing and permission of instructor.  
**Description:** Tissue engineering (TE) and the material strategy for different tissue constructs in bone TE, liver TE, neural TE, intestine TE, etc. will be discussed in this course. Same as MSE 5073. May not be used for degree credit with CHE 4703.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

CHE 5110 Special Topics in Chemical Engineering  
**Prerequisites:** Consent of instructor.  
**Description:** Small group and individual projects in unit operations, unit procedures, chemical kinetics, computer applications, process modeling, or any of a wide range of chemical engineering topics. May be repeated for credit if subject matter varies. Offered for variable credit, 2-3 credit hours, maximum of 6 credit hours.  
**Credit hours:** 2-3  
**Contact hours:** Other: 2  
**Levels:** Graduate  
**Schedule types:** Independent Study  
**Department/School:** Chemical Engineering

CHE 5123 Advanced Chemical Reaction Engineering  
**Prerequisites:** CHE 4473.  
**Description:** Advanced principles and applications of chemical kinetics in catalysis, heterogeneous systems, non-ideal reactions, polymerization, and biological reactions.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

CHE 5133 Catalysis and Photocatalysis  
**Prerequisites:** Graduate standing or CHE 3123 or consent of instructor.  
**Description:** Molecular level insight into catalysis and photocatalysis from the basics of chemistry and chemical engineering. Topics covered include homogeneous catalysis, heterogeneous catalysis, molecular photocatalysis, and photocatalysis on metals and metal oxides. The rational design of catalysts using first-principle (e.g., density functional theory) calculations is covered. Advancements made in the experimental and computational catalysis fields to convert renewable natural resources such as solar light and cellulosic biomass into electricity, fuels, valuable chemicals and pharmaceuticals. May not be used for degree credit with CHE 4133.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

CHE 5213 Advanced Transport Phenomena  
**Prerequisites:** CHE 3333 (or equivalent), or graduate student standing in the School of Chemical Engineering, or a closely related, calculus-based STEM discipline, or consent of instructor.  
**Description:** Mechanisms and modeling of mass, momentum and heat transport with an emphasis on chemical, petroleum, and biomedical engineering applications.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering

CHE 5233 Bioseparations  
**Prerequisites:** BAE 3013 or CHE 3013.  
**Description:** Study of separations important in food and biochemical engineering such as leaching, extraction, expression, absorption, ion exchange, filtration, centrifugation, membrane separation, and chromatographic separations. Course available online only through AG*IDEA consortium.  
**Credit hours:** 3  
**Contact hours:** Lecture: 3  
**Levels:** Graduate  
**Schedule types:** Lecture  
**Department/School:** Chemical Engineering
CHE 5263 Advanced Biomaterials Science and Engineering
Prerequisites: Graduate standing or consent of instructor.
Description: Engineering issue that are implicit in understanding the interactions of living tissue and processed materials will be introduced. Emphasis is on identifying the processes in which cells interact with surfaces and particulate matter and the outcome of these interactions. Highlighted biological responses will include inflammation and coagulation. Also, biomaterial issues related to drug delivery and tissue engineering will be discussed. Same course as MAE 5003.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5273 Basic Physiology and Physiological System Analysis for Engineers
Prerequisites: Graduate standing or consent of instructor.
Description: The goals of this class are: 1) to introduce the basic physiology concepts used widely in biomedical engineering research; 2) to introduce and develop engineering concepts and approaches for quantitative analysis of physiological systems. Engineering principles will be applied to study mechanical properties of various tissue and organ systems under normal and diseased conditions. Knowledge obtained from this class can help engineers to apply engineering principles to the design and development of medical devices for disease treatments. Same course as MAE 5013.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5283 Advanced Bioprocess Engineering
Prerequisites: Consent of instructor.
Description: Application of fundamental engineering principles to biochemical and biological processes. Introduction to cellular processes, fermentation technology, biological mass transfer and kinetics, bioreactor design and scale-up, and downstream processing. Same course as BAE 5283.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5293 Advanced Biomedical Engineering
Prerequisites: Consent of instructor.
Description: Principles and engineering analysis of biomedical processes. Artificial organs, biomaterials, tissue engineering, transport in biological systems, biomedical imaging and drug delivery systems. Same course as MAE 5033.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5343 Advanced Environmental Engineering
Prerequisites: Consent of instructor.
Description: Science and engineering principles to minimize the adverse effects of human activities on the environment. National and state regulations. Predictive movement and fate of chemicals in the geospheres. Multi-media pollution assessment, analysis, and control. Consideration of safety, health, and environment issues from a process standpoint. Special project required. Credit not allowed if CHE 4343 was taken.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5373 Process Simulation
Prerequisites: CHE 5843 or concurrent enrollment or with professor’s consent.
Description: Computer-aided process synthesis, simulation, analysis and optimization. Systematic tools for developing and screening potential chemical process flow sheets. Use of commercial process simulators to aid in evaluating process designs. Practical problems will be used as examples and case studies.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5493 Molecular Modeling and Simulation
Prerequisites: Graduate standing and any one of the following courses: CHE 3473, CHEM 3433, CHEM 3553, MAE 3223, MAE 5683, MAE 5693, BIOC 3224 or consent of instructor.
Description: Theory of statistical mechanics and its application to computing thermodynamic, transport and phase equilibria properties of fluids. Modeling of matter at molecular level and atomistic simulation methods such as Monte Carlo and molecular dynamics. Quantum calculation of thermodynamics for industrially relevant reactions. Software used: Cassandra, Gromacs, LAMMPS, and Gaussian. May not be used for degree credit with CHE 4493.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5523 Colloid Processing
Prerequisites: Graduate standing in engineering, physics, or chemistry or consent of instructor.
Description: The physics and chemistry governing the behavior of microscopic particles in dilute and concentrated suspensions. Interparticle interaction influence on viscosity, viscoelasticity, yield stress, and shear thinning. Practical application of colloids principles in industrial practice.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering
CHE 5603 Membrane Separations
Prerequisites: Graduate standing and CHE 3113 or consent of instructor.
Description: Basic principles of membrane technology: membrane synthesis processes and molecular separation mechanisms for different types of membranes. General overview of many different membrane processes. Basic transport equations and fundamental concepts with examples and industrial applications. Includes a project/discussion for a membrane reactor model. May not be used for degree credit with CHE 4603.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5633 Stagewise Operations
Description: Stagewise separation in binary and multicomponent systems. Development of theoretical techniques with application to typical situations in vapor-liquid, liquid-liquid and solid-liquid systems. Use of digital and analog techniques.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5703 Optimization Applications
Prerequisites: Graduate standing.
Description: A survey of various methods of unconstrained and constrained linear and non-linear optimization. Applications of these methodologies using hand-worked examples and available software packages. Intended for engineering and science students. Same course as ECEN 5703, IEM 5023 & MAE 5703.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5733 Neural Networks
Prerequisites: Graduate standing.
Description: Introduction to mathematical analysis of networks and learning rules and on the application of neural networks to certain engineering problems, image and signal processing and control systems. Same course as ECEN 5733 & MAE 5733.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5743 Chemical Engineering Process Modeling
Description: Chemical engineering systems and process models. Analytical and numerical methods of solution of resulting equations with computer methods in a chemical engineering context.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5753 Applied Numerical Computing for Scientists and Engineers
Prerequisites: Graduate standing, and MATH 2233 or MATH 3263, and knowledge of programming, or consent of instructor.
Description: Practical software tools for computational problem solving in science and engineering: version control (e.g., Git), mathematical typesetting (e.g., LaTeX), graphical user interfaces, and high level program languages with libraries of solvers and visualization tools (e.g., Python and MATLAB). Application of numerical computing methods to solve systems of differential and algebraic equations and to estimate model parameters using optimization. May not be used for degree credit with CHE 4753.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5773 Computational Fluid-Particle Dynamics
Prerequisites: Graduate standing and CHE 3333 or consent of instructor.
Description: Computational fluid-particle dynamics (CFPD) modeling strategies and simulation of multiphase flow transport phenomena such as particle tracking, deposition, reaction, and erosion. Detailed flow visualization using multiphase flow models on ANSYS CFX and Fluent platforms. Application of numerical techniques to simulate processes defined by first-principles. Application of CFPD for drug formulation optimization, lung aerosol dynamics, separation processes, reactions in stirred tanks and plug flow reactors. May not be used for degree credit with CHE 4773.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5843 Principles of Chemical Engineering Thermodynamics
Description: Principles of thermodynamics. Properties of fluids and prediction of thermodynamic properties. Phase and chemical equilibrium. Thermodynamics in unit operations.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5850 Advanced Process Control Laboratory
Prerequisites: Graduate standing and CHE 3333 or consent of instructor.
Description: Instrumentation systems and control strategies on pilot-scale chemical processes. Calibration, filtering, dynamic modeling, tuning, advanced control, and method evaluation. Students will learn industrial practices and cope with many non-idealities. Offered for variable credit, 2-3 credit hours, maximum of 6 credit hours.
Credit hours: 2-3
Contact hours: Lecture: 1 Lab: 2
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Chemical Engineering
CHE 5853 Advanced Chemical Process Control
Prerequisites: CHE 4843 or equivalent.
Description: General concepts and approaches of model-based control. Studies in the application of process-model-based control and model-predictive control on multivariable, nonlinear, nonstationary, noisy processes.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5873 Air Pollution Control Engineering
Description: Causes, effects and control of atmosphere pollution. Same course as CIVE 5873.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 5990 Special Problems
Prerequisites: Consent of instructor.
Description: Individual report topics in chemical engineering involving operations, processes, equipment, experiments, literature search, theory, computer use or combinations of these. Offered for variable credit, 2-4 credit hours, maximum of 9 credit hours.
Credit hours: 2-4
Contact hours: Other: 2
Levels: Graduate
Schedule types: Independent Study
Department/School: Chemical Engineering

CHE 6000 Doctoral Thesis
Prerequisites: Consent of major professor.
Description: The doctoral candidate registers for a minimum of 2 semester credit hours to a maximum of 15 semester credit hours in each semester during which laboratory work is in process. Methods used in research and thesis writing. An original investigation of a problem in chemical engineering and its report in a dissertation. Offered for variable credit, 2-15 credit hours, maximum of 54 credit hours.
Credit hours: 2-15
Contact hours: Other: 2
Levels: Graduate
Schedule types: Independent Study
Department/School: Chemical Engineering

CHE 6223 Advanced Chemical Engineering Thermodynamics
Prerequisites: CHE 5843.
Description: Phase equilibrium in multicomponent systems. Irreversible processes. Properties of fluids and the prediction of properties by statistical methods. Application of thermodynamics to unit operations.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

CHE 6440 Advanced Topics in Chemical Engineering
Prerequisites: MS or PhD candidacy in chemical engineering or consent of instructor.
Description: Topics in chemical engineering unit operations in design. Advanced mathematical techniques in chemical engineering problems. May be repeated for credit if subject matter varies. Offered for variable credit, 3-6 credit hours, maximum of 9 credit hours.
Credit hours: 3-6
Contact hours: Other: 3
Levels: Graduate
Schedule types: Independent Study
Department/School: Chemical Engineering

CHE 6703 Research Methods in Chemical Engineering
Prerequisites: MS or PhD candidacy in chemical engineering or consent of instructor.
Description: Methods and skills required to successfully conduct chemical engineering research projects. Maintaining research records, experiment design, data validation, results presentation and research ethics.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Chemical Engineering

Undergraduate Programs
- Chemical Engineering, BSCH (http://catalog.okstate.edu/engineering-architecture-technology/chemical-engineering/bsch)
- Chemical Engineering: Biomedical/Biochemical, BS (http://catalog.okstate.edu/engineering-architecture-technology/chemical-engineering/biomedical-biochemical-bsch)
- Chemical Engineering: Pre-Medical, BSCH (http://catalog.okstate.edu/engineering-architecture-technology/chemical-engineering/pre-medical-bsch)
- Petroleum Engineering (PETE), Minor (http://catalog.okstate.edu/engineering-architecture-technology/chemical-engineering/petroleum-engineering-minor)

Graduate Programs
The School of Chemical Engineering offers programs leading to the Master of Science and Doctor of Philosophy. A program of independent study and research on a project under the direction of a member of the Graduate Faculty will be satisfactorily completed by all graduate students. For the Master of Science candidate, the project may result in a thesis. For the Doctor of Philosophy candidate, the project will result in his or her dissertation.

Admission Requirements
Admission to either the Master of Science or Doctor of Philosophy degree program requires graduation from a chemical engineering curriculum...
approved by the ABET or a recognized equivalent from any international program.

Students with related undergraduate degrees, such as chemistry, automation engineering, etc., can be admitted conditionally, subject to completing prescribed undergraduate Chemical Engineering program courses. Admission is competitive based on undergraduate GPA, GRE and TOEFL (for international students), statement of interests, experience and recommendations.

The Master of Science Degree
Two options are offered for this degree, Research-Oriented and Practice-Oriented options. General requirements for the Research-Oriented MS degree in chemical engineering are 30 credit hours of work beyond the BS degree and an acceptable thesis. At least 18 hours must be in classwork and a minimum of six hours of credit is required for thesis research. The general requirements for the Practice-Oriented MS degree are 32 credit hours of work beyond the BS, including two hours of credit assigned to an acceptable technical report. For both options, the courses taken must include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5123</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5213</td>
<td>Advanced Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5743</td>
<td>Chemical Engineering Process Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5843</td>
<td>Principles of Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

The Doctor of Philosophy Degree
The general credit requirement is a minimum of 90 credit hours beyond the BS degree, including at least 36 hours of credit for research and at least 30 hours of classwork. The courses must include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 5123</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5213</td>
<td>Advanced Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5743</td>
<td>Chemical Engineering Process Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CHE 5843</td>
<td>Principles of Chemical Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>CHE 6703</td>
<td>Research Methods in Chemical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

Each student is responsible for consultation with his or her advisory committee in preparing the study plan.

Faculty
James R. (Rob) Whiteley, PhD, PE—Professor and Head
Professor and Edward Bartlett Chair: James R. (Rob) Whiteley, PhD, PE
Professor and Anadarko Chair: Heather D.N. Fahlenkamp, PhD
Professor and Continental Resources Chair: Geir Hareland, PhD
Professor and BP Faculty Fellow: Sundar V. Madihally, PhD
Professors: D. Alan Tree, PhD, Jeffery L. White, PhD
Associate Professor and Harold Courson Faculty Fellow: Clint P. Aichele, PhD
Associate Professor, Harold Courson Chair and Petroleum Engineering Program Director: Runar Nygaard, PhD
Associate Professor and Robert N. Maddox Fellow: Joshua D. Ramsey, PhD, PE
Associate Professor and Samson Chair in Petroleum Engineering: Mileva Radonjic, PhD

Assistant Professors: Marimuthu Andiappan, PhD; Prem L. Bikkina, PhD; Ömer Özgür Çapraz, PhD; Yu Feng, PhD; Shohreh Hemmati, PhD; Seok-Jhin Kim, PhD; Jindal K. Shah, PhD; Ashlee Ford Versypt, PhD
Research Assistant Professor: Sayeed Mohammad, PhD
Clinical Assistant Professor (ENDEAVOR): Brad Rowland, PhD
Professor of Practice: Mike Resetarits