The Department of Biosystems and Agricultural Engineering is administered jointly by the College of Agricultural Sciences and Natural Resources and the College of Engineering, Architecture and Technology.

Biosystems engineers are professionals who create and adapt engineering knowledge and technologies for the efficient and effective production, processing, storage, handling and distribution of food, feed, fiber and other biological products, while at the same time providing for a quality environment and preserving and protecting natural resources. Biosystems engineers address problems and opportunities related to food, water, energy and the environment—all of which are critical to the quality of life in our society. Subject-matter specialization is provided through the following four undergraduate option areas: bioprocessing and food processing, environment and natural resources, machine systems and pre-medical.

Biosystems engineering courses integrate engineering sciences, physical sciences, and biological sciences, and teach students to address real-world challenges. With the guidance of experienced faculty, students work both as individuals and in teams to design creative solutions to complex problems.

The overall objective of the undergraduate Biosystems Engineering degree program is to provide the comprehensive education necessary to prepare students for successful, productive and rewarding careers in engineering for agricultural, food and biological systems.

Program Educational Objectives (PEOs) for the Biosystems Engineering (BAE) Undergraduate Degree Program at Oklahoma State University. Within a few years of graduation, Biosystems Engineering program graduates will become top professionals, managers or leaders in a wide variety of industries and organizations involved with biosystems engineering, where they apply discovery, problem solving, and leadership skills for the benefit of their organization and the society at large.

The undergraduate educational program is divided into two components—pre-professional and professional. In the pre-professional portion of the Biosystems Engineering program (usually equivalent to two years of study) the focus is on the underlying biological, physical, chemical and mathematical principles of engineering, supplemented by appropriate general education courses in English, social sciences and humanities. Students who demonstrate proficiency in this portion of the program are eligible for admission to the professional school in Biosystems Engineering.

The professional school portion of the Biosystems Engineering curriculum (typically two years) builds systematically upon the scientific knowledge acquired in the pre-professional curriculum. In professional school, students have the opportunity to focus on the option areas listed above. The degree is accredited by the Engineering Accreditation Commission of ABET (see www.abet.org) under criteria for biological engineering and similarly named programs.

Each professional school course builds upon preceding engineering courses to develop in the student the ability to identify and solve meaningful engineering problems. The coursework is specifically sequenced and interrelated to provide design experience at each level, leading to progressively more complex, open-ended problems. The coursework incorporates the social and economic aspects of technical problems, and stresses the responsibilities of engineering professionals to behave ethically and promote occupational and public safety. The program culminates in senior year design courses in which students integrate the analysis, synthesis and other abilities they have developed throughout the earlier portions of their study into a capstone experience. At this point, students are able to design components, systems and processes that meet specific requirements, including such pertinent societal considerations as ethics, safety, environmental impact and aesthetics. The students have also developed and displayed the ability to conduct experiments essential to specific studies and to analyze the experimental results that lead to meaningful conclusions.

The Biosystems Engineering program verifies that our students possess core engineering knowledge and capability by requiring students to take the Fundamentals of Engineering exam, which is an important step toward becoming a professional engineer. All candidates for the BS degree in Biosystems Engineering must take the Fundamentals of Engineering exam prior to receiving their degree.

An integral part of this education continuum—from basic science through comprehensive engineering design—is learning experiences that facilitate the students’ abilities to function effectively in both individual and team environments. Moreover, the program provides every graduate with adequate learning experiences to develop effective written and oral communication skills. State-of-the-art computational tools are introduced and used as a part of their problem-solving experiences. Finally, the students’ experience in solving ever-more-challenging problems enables them to continue to learn independently throughout their professional careers.

A wide variety of employment opportunities are available for biosystems engineers in industry, public service and education. Some of these opportunities include positions in governmental agencies, consulting engineering firms, and agricultural and food equipment industries. Biosystems engineers are employed throughout the U.S. as well as internationally.

Students interested in a degree in Biosystems Engineering may initially enroll in the College of Engineering, Architecture and Technology or the College of Agricultural Sciences and Natural Resources. Through either college, they will be assigned a Biosystems Engineering adviser.

The Department of Biosystems and Agricultural Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in Biosystems Engineering. These degrees emphasize research and development.

Excellent laboratory and computer facilities are available for students to explore research and design in such areas as bioprocessing and food engineering, machine vision, sensor and control technology, waste management and utilization, hydrology, water quality, porous media flow, and intelligent systems for agricultural machine design and production.

Research projects are supported by the Oklahoma Agricultural Experiment Station and by state, federal and private grants and contracts. Well-trained faculty members, many of whom are registered professional engineers with research, consulting and design experience, guide the graduate students’ activities and plan programs to meet students’ needs. Graduate students design experiments and special equipment to conduct their work. They are expected to demonstrate, by supporting research or by designs, the ability to identify a problem, define alternatives, propose a solution, organize a design or an experimental investigation, manage the
project to completion and report the results through peer-reviewed papers and professional presentations.

Admission Requirements

Admission to either the Master of Science or Doctor of Philosophy degree program requires graduation from an engineering curriculum accredited by the ABET Engineering Accreditation Commission, http://www.abet.org. Students without accredited degrees may be admitted provisionally and may be required to take additional courses. A student must be accepted by an adviser in the department prior to official admission to the graduate program.

Degree Requirements

A candidate for the graduate degrees listed above follows an approved plan of study which must satisfy at least the minimum University requirements for that particular degree.

Courses

BAE 1012 Introduction to Biosystems Engineering
Prerequisites: Engineering major.
Description: Introduction to the Biosystems Engineering discipline; use of computers in solving engineering problems; and the application of computer software in engineering analysis and reporting.
Credit hours: 2
Contact hours: Lecture: 1 Lab: 2 Contact: 3
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 1022 Experimental Methods in Biosystems Engineering
Prerequisites: BAE 1012 or consent of instructor.
Description: An introduction to the basics of instrumentation, measurement techniques, and data analysis, with an emphasis on written communication skills. Lecture and laboratory exercises that address measurement principles, including accuracy, precision and error analysis.
Credit hours: 2
Contact hours: Lecture: 1 Lab: 2 Contact: 3
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 2013 Modeling in Biosystems Engineering
Prerequisites: MATH 2144; BIOL 1114 or BOT 1404.
Description: Introduction and modeling of various applications in biosystems and agricultural engineering. Case studies that emphasize the interface between engineering and biology in areas such as plant systems, industrial biological processes, sensor and control systems development, intelligent machine design, environmental remediation, water treatment systems and food processing. Use of a fourth generation programming language for solving engineering problems. Course previously offered as BAE 2012 and BAE 2022.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 3013 Heat and Mass Transfer in Biological Systems
Prerequisites: ENSC 3233, MATH 2233.
Description: Mechanisms of heat and mass transfer, with specific applications in transport processes of biological systems. Introduction to steady state and transient heat conduction and convection, radiation, diffusion, simultaneous heat and mass transfer.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 3023 Instruments and Controls
Prerequisites: ENSC 2613, MATH 2233.
Description: Design of control and instrumentation systems, including sensor and actuator principles, interface electronics, system identification, modeling, and performance specification. Applications in biological and agricultural systems. Design project required.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2 Contact: 4
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 3033 Advanced Biology and Material Science of Biomaterials
Prerequisites: BAE 1022, BIOL 1114 or BOT 1404, PHYS 2014, MATH 2144.
Description: Building on basic biology and engineering fundamentals to characterize properties of biological materials such as moisture content and water movement, rheology, electromagnetic response, thermal properties, conveyance requirements, psychometric interactions and heating/cooling response. Course previously offered as BAE 2022, BAE 2023, and BAE 3423.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2 Contact: 4
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 3113 Biological Applications in Engineering
Prerequisites: BAE 2012, BIOL 1114, ENSC 2213, 3233, MATH 2233 or concurrent enrollment.
Description: Introduction to engineering applications of biological processes. Technologies covered include fermentation systems, enzyme kinetics, wastewater treatment and bioremediation.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 3213 Energy and Power in Biosystems Engineering
Prerequisites: BAE 1022, completion or concurrent enrollment in ENSC 2213, ENSC 2613, ENSC 3233.
Description: Analysis and design of energy generation, transmission, and utilization in the production and processing of biological materials.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2 Contact: 4
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng
BAE 3223 Principles of Agriculture and Off-Road Machinery
Prerequisites: Completion or concurrent enrollment in ENSC 3233, ENSC 2613 and SOIL 2124.
Description: Principles of design, function, operation, testing and application of agricultural and off-road equipment and systems. Vehicle and implement system dynamics and hitching, and plant and soil interaction with machines. Machinery evaluation and standardized test procedures emphasizing safe and efficient performance of modern farm and off-road equipment.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2 Contact: 4
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 3313 Natural Resources Engineering
Prerequisites: BAE 2023, STAT 2013, and ENSC 3233 or concurrent enrollment.
Description: Principles and practices of engineering analysis and design applied to hydrology, water quality, erosion and sedimentation, air quality, irrigation and animal waste management. Course previously offered as BAE 3323.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 3 Contact: 5
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4001 Professional Practice in Biosystems Engineering
Prerequisites: Concurrent enrollment in BAE 4012.
Description: Preparation for professional practice through case studies about ethics, legal liability, safety, and societal issues. Practical professional communications experience.
Credit hours: 1
Contact hours: Contact: 1 Other: 1
Levels: Undergraduate
Schedule types: Discussion
Department/School: Biosystems & Ag Eng

BAE 4012 Senior Engineering Design Project I
Prerequisites: Completion or concurrent enrollment in BAE 4001, BAE 3213; admission to professional school.
Description: Team work on professional level design projects, using design procedures to develop specifications, propose alternative solutions, consider external constraints, develop drawings or plans, construct, test and evaluate designs.
Credit hours: 2
Contact hours: Lecture: 1 Lab: 2 Contact: 3
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4023 Senior Engineering Design Project II
Prerequisites: Completion or concurrent enrollment in BAE 4012, BAE 3013, BAE 3023.
Description: Second of two-semester sequence of senior design courses. Course previously offered as BAE 4022.
Credit hours: 3
Contact hours: Lecture: 1 Lab: 4 Contact: 5
Levels: Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4213 Precision Agriculture
Prerequisites: MATH 1513, senior standing.
Description: Introduction to the concepts of precision agriculture including analysis of spatial variability, relationships of fertility and crop response, geographical information systems, variable rate technology, optical sensing, global positioning systems, and yield monitoring. Case studies included for detailed analyses. Same course as SOIL 4213.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 4224 Machinery for Production and Processing
Prerequisites: ENSC 2143.
Description: Analysis and design of machine components and machine systems for production and processing of biological materials. Component failure theory and analysis. Assembly and design of mechanical elements. Course previously offered as BAE 4223.
Credit hours: 4
Contact hours: Lecture: 4 Contact: 4
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 4283 Bioprocess Engineering
Prerequisites: BAE 3013, BAE 3113 or consent of instructor, ENSC 3233.
Description: Application of fundamental engineering principles to biochemical and biological processes. Introduction to cellular processes, fermentation technology, biological mass transfer and kinetics, bioreactor design and scale-up and downstream processing. Same course as CHE 4283.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 4314 Design Hydrology
Prerequisites: BAE 2023 and ENSC 3233, and STAT 4033 or STAT 4073, or concurrent.
Description: Basic principles of surface and groundwater hydrology and their application in engineering problems. The hydrologic cycle, weather and hydrology, precipitation, evaporation, transpiration, subsurface waters, stream flow hydrographs, hydrologic and hydraulic stream routing, probability of hydrologic events and application of hydrologic models. Laboratory component will emphasize the application of hydrologic and hydraulic models and the quantification of hydrologic and hydraulic parameters. Course previously offered as BAE 4313.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2 Contact: 5
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4314 Design Hydrology
Prerequisites: BAE 2023 and ENSC 3233, and STAT 4033 or STAT 4073, or concurrent.
Description: Basic principles of surface and groundwater hydrology and their application in engineering problems. The hydrologic cycle, weather and hydrology, precipitation, evaporation, transpiration, subsurface waters, stream flow hydrographs, hydrologic and hydraulic stream routing, probability of hydrologic events and application of hydrologic models. Laboratory component will emphasize the application of hydrologic and hydraulic models and the quantification of hydrologic and hydraulic parameters. Course previously offered as BAE 4313.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2 Contact: 5
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4314 Design Hydrology
Prerequisites: BAE 2023 and ENSC 3233, and STAT 4033 or STAT 4073, or concurrent.
Description: Basic principles of surface and groundwater hydrology and their application in engineering problems. The hydrologic cycle, weather and hydrology, precipitation, evaporation, transpiration, subsurface waters, stream flow hydrographs, hydrologic and hydraulic stream routing, probability of hydrologic events and application of hydrologic models. Laboratory component will emphasize the application of hydrologic and hydraulic models and the quantification of hydrologic and hydraulic parameters. Course previously offered as BAE 4313.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2 Contact: 5
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4314 Design Hydrology
Prerequisites: BAE 2023 and ENSC 3233, and STAT 4033 or STAT 4073, or concurrent.
Description: Basic principles of surface and groundwater hydrology and their application in engineering problems. The hydrologic cycle, weather and hydrology, precipitation, evaporation, transpiration, subsurface waters, stream flow hydrographs, hydrologic and hydraulic stream routing, probability of hydrologic events and application of hydrologic models. Laboratory component will emphasize the application of hydrologic and hydraulic models and the quantification of hydrologic and hydraulic parameters. Course previously offered as BAE 4313.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 2 Contact: 5
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng
BAE 4324 Water Quality Engineering
Prerequisites: BAE 4314 or CIVE 3843.
Description: Point and nonpoint source pollution processes, including transport mechanisms, and contaminant fate, control and remediation. Other topics include principles of ecological engineering, water body assessment and integrated watershed management.
Credit hours: 4
Contact hours: Lecture: 3 Lab: 3 Contact: 6
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng

BAE 4400 Special Problems
Description: Investigations in specialized areas of biosystems engineering. Offered for variable credit, 1-4 credit hours, maximum of 8 credit hours.
Credit hours: 1-4
Contact hours: Contact: 1-4 Other: 1-4
Levels: Undergraduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

BAE 4413 Food Engineering
Prerequisites: BAE 3013 and ENSC 3233, ENSC 2213.
Description: Analysis and design of various unit operations in food processing including thermal processing, drying, evaporation, freezing, processing non-Newtonian fluids and quality changes during processing. Course previously offered as BAE 4423.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 4400 Special Problems
Description: Investigations in specialized areas of biosystems engineering. Offered for variable credit, 1-4 credit hours, maximum of 8 credit hours.
Credit hours: 1-4
Contact hours: Contact: 1-4 Other: 1-4
Levels: Undergraduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

BAE 5213 Renewable Energy Engineering
Prerequisites: ENSC 2213, ENSC 3233 or consent of instructor.
Description: Renewable technologies such as solar, wind, geothermal, hydroelectric, and biomass to generate energy for electricity, heating, transportation, and other uses.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 5243 Biological Conversion for Advanced Biofuels
Prerequisites: ENSC 2213.
Description: Fundamental principles and applications of converting biomass to advanced biofuels. Focus will be on biological processes, fermentor design and operation, product recovery and emerging fuels.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 5283 Advanced Bioprocess Engineering
Prerequisites: Consent of instructor.
Description: Application of fundamental engineering principles to biochemical and biological processes. Introduction to cellular processes, fermentation technology, biological mass transfer and kinetics, bioreactor design and scale-up and downstream processing. Same course as CHE 5283.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 5313 Watershed Modeling
Prerequisites: BAE 4313 or equivalent.
Description: A computer modeling course with an emphasis on chemical and physical processes governing nonpoint source pollution (nitrogen, phosphorus, sediment) at the basin scale. The laboratory use of state-of-the-art models applied to a variety of agricultural systems. "Hands on" use of comprehensive hydrologic water quality models that utilize spatial data in a geographic information system. Models and parameter uncertainty, digital data sources, parameter estimation and model testing, calibration and validation. For students with advanced personal computer skills.
Credit hours: 3
Contact hours: Lecture: 1 Lab: 6 Contact: 7
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biosystems & Ag Eng
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 5324</td>
<td>Modeling and Design in Storm Water and Sediment Control</td>
<td>BAE 4313 or equivalent.</td>
</tr>
<tr>
<td></td>
<td>Description: Analysis and design of storm water, sediment and water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>quality systems with a focus on application to urban areas and developments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the urban-rural fringe. Advanced concepts in hydrologic modeling with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kinematics, diffusion and dynamic modeling of flow; soil erosion, sediment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transport and sediment control; storm water quality modeling and the impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of best management practices. In laboratories, use of hydrologic, sediment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and water quality models in analysis and design for real-world problems.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 4</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 3 Lab: 3 Contact: 6</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lab, Lecture, Combined lecture and lab</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5333</td>
<td>Applied Water Resources Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: STAT 5013 or equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Applied statistical methods for hydrologists, engineers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and environmental scientists for analysis of environmental data. Parametric</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and nonparametric methods and exploratory data analysis applied to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>observed environmental data sets. Laboratory exercises emphasize hands-on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>application of statistical problems to reinforce concepts.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 2 Lab: 3 Contact: 5</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lab, Lecture, Combined lecture and lab</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5343</td>
<td>Environmental Contaminant Transport</td>
<td>BAE 4313.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: BAE 4313.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Conceptual and mathematical models for the transport</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of contaminants in natural systems with an emphasis on agricultural</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pollutants. Basic transport processes relevant to the three environmental</td>
<td></td>
</tr>
<tr>
<td></td>
<td>media - air, water, and soil. Common features underlying pollutant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transport.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 3 Contact: 3</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5353</td>
<td>Environmental and Ecological Risk Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Graduate standing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Process and methodologies associated with human,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>environmental and ecological risks. Will quantify uncertainty in human</td>
<td></td>
</tr>
<tr>
<td></td>
<td>perturbation, management, and restoration of environmental and ecological</td>
<td></td>
</tr>
<tr>
<td></td>
<td>processes. Course available online only through AG*IDEA consortium.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 3 Contact: 3</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5413</td>
<td>Advanced Instrumentation and Control Systems for Biological Applications</td>
<td>BAE 3023 or equivalent.</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: BAE 3023 or equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Principles and operation of commercial instruments and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data acquisition systems used in biological, environmental, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>agricultural applications. Hands-on projects that will improve system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>design, development and programming skills. Introduction of advanced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>topics including machine vision, spectroscopy, and data communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>networks.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 3 Contact: 3</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lab, Lecture, Combined lecture and lab</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5423</td>
<td>Food Rheology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: ENSC 3233.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Characterization and analysis of the rheological properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of food products. Focus on measurement techniques and equipment,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>including tube and rotational type instruments, with specific applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in food processing.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 2 Lab: 2 Contact: 4</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lab, Lecture, Combined lecture and lab</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5433</td>
<td>Biosensors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: PHYS 2114 and CHEM 3053 or equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Principles and applications of biosensors in food analysis,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>disease diagnostics, and environmental monitoring. Emphasis on conceptual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>design and characterization of biosensors. Introduction to recent advances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in biodetection using nanotechnology.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 3</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Lecture: 3 Contact: 3</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 5501</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: BAE 3023 or equivalent.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Discussion of current literature with special emphasis on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>research and experimental techniques.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 1</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Contact: 1 Other: 1</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Discussion</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
<tr>
<td>BAE 6000</td>
<td>Doctoral Research and Dissertation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites: Approval by the student's advisory committee.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Research and doctoral dissertation preparation. Offered for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>variable credit, 1-10 credit hours, maximum of 42 credit hours.</td>
<td></td>
</tr>
<tr>
<td>Credit</td>
<td>hours: 1-10</td>
<td></td>
</tr>
<tr>
<td>Contact</td>
<td>hours: Contact: 1-10 Other: 1-10</td>
<td></td>
</tr>
<tr>
<td>Levels:</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Schedule</td>
<td>Independent Study</td>
<td></td>
</tr>
<tr>
<td>Department/School:</td>
<td>Biosystems & Ag Eng</td>
<td></td>
</tr>
</tbody>
</table>
BAE 6101 Teaching Practicum in Biosystems Engineering
Prerequisites: One semester of doctoral study in Biosystems Engineering, or consent of instructor.
Description: Philosophies and techniques of resident and non-resident teaching, including experiences in preparation, presentation, and evaluation of lectures, laboratories, extension or continuing education programs. Course previously offered as BAE 6100.
Credit hours: 1
Contact hours: Lab: 2 Contact: 3 Other: 1
Levels: Graduate
Schedule types: Independent Study, Lab, Combined lab & IS
Department/School: Biosystems & Ag Eng

BAE 6213 Advanced Biomass Thermochemical Conversion
Prerequisites: ENSC 2213.
Description: Advanced study, evaluation, and application of thermochemical conversion pathways in biofuel production. Specific topics include biomass gasification, pyrolysis, liquefaction, and heterogeneous catalysis. Course available online only through AG*IDEA consortium. Course previously offered as BAE 6100.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3 Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 6313 Stochastic Methods in Hydrology
Prerequisites: CIVE 5843, STAT 4033.
Description: Stochastic and statistical hydrologic analyses of surface water and groundwater systems. Analysis of urban and rural drainage and detention systems. Same course as CIVE 6843.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3 Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 6333 Fluvial Hydraulics
Prerequisites: BAE 3013 or equivalent.
Description: Principles of sediment detachment and transport in fluvial systems. Design of stable channels and flow resistance relationships for sediment-laden flows.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3 Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 6343 Ground Water Contaminant Transport
Prerequisites: SOIL 5583 or CIVE 5913 or GEOL 5453.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3 Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 6503 Similitude in Research
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biosystems & Ag Eng

BAE 6520 Problems in Soil and Water Engineering
Prerequisites: Consent of instructor.
Description: Consent of instructor. Problems associated with erosion control, drainage, flood protection and irrigation. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 2-6
Contact hours: Contact: 2-6 Other: 2-6 Levels: Graduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

BAE 6540 Prob Farm Power & Mach
Prerequisites: Consent of instructor.
Description: Literature review and analytical studies of selected farm power and machinery problems. Written report required. Offered for variable credit, 2-6 credit hours, maximum of 6 credit hours.
Credit hours: 2-6
Contact hours: Contact: 2-6 Other: 2-6 Levels: Graduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

BAE 6580 Problems in Transport Processes
Prerequisites: Consent of instructor.
Description: Literature review and analysis of heat and mass transport and interval diffusion in biological materials. Transport phenomena at interfaces, thermal and cryogenic processing, drying, packed and fluidized bed systems. Thermal and moisture control processing affecting quality of food products. Written report required. Offered for variable credit, 2-6 credit hours, maximum of 6 credit hours.
Credit hours: 2-6
Contact hours: Contact: 2-6 Other: 2-6 Levels: Graduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

BAE 6580 Adv Research & Study
Prerequisites: Approval by the student’s advisory committee.
Description: Research and study at the doctoral level on the topic related to the student’s doctoral program and field of interest. Offered for variable credit, 1-10 credit hours, maximum of 20 credit hours.
Credit hours: 1-10
Contact hours: Contact: 1-10 Other: 1-10 Levels: Graduate
Schedule types: Independent Study
Department/School: Biosystems & Ag Eng

Undergraduate Programs

- Biosystems Engineering: Bioprocessing & Food Processing, BSBE (http://catalog.okstate.edu/engineering-architecture-technology/biosystems-agricultural-engineering/bioprocessing-food-processing-bsbe)
- Biosystems Engineering: Biosystems Engineering, BSBE (http://catalog.okstate.edu/engineering-architecture-technology/biosystems-agricultural-engineering/biosystems-engineering-general-option-bsbe)
Graduate Programs
The Department of Biosystems and Agricultural Engineering offers programs leading to the Master of Science and Doctor of Philosophy degrees in Biosystems Engineering. These degrees emphasize research and development.

Excellent laboratory and computer facilities are available for students to explore research and design in such areas as bioprocessing, food engineering, sensor and control technology, waste management and utilization, hydrology, water quality, porous media flow, and intelligent systems for agricultural machine design and production.

Research projects are supported by the Oklahoma Agricultural Experiment Station and by state, federal and private grants and contracts. Well-trained faculty members, many of whom are registered professional engineers with research, consulting and design experience, guide the graduate students' activities and plan programs to meet students' needs. Graduate students design experiments and special equipment to conduct their work. They are expected to demonstrate, by supporting research or by designs, the ability to identify a problem, define alternatives, propose a solution, organize a design or an experimental investigation, manage the project to completion, and report the results through peer-reviewed papers and professional presentations.

Admission Requirements
Admission to either the Master of Science or Doctor of Philosophy degree program requires graduation from an engineering curriculum accredited by the Engineering Accreditation Commission of ABET (www.abet.org). Students without accredited degrees may be admitted provisionally and may be required to take additional courses. A student must be accepted by an adviser in the department prior to official admission to the graduate program.

Degree Requirements
A candidate for either of the graduate degrees listed above follows an approved plan of study which must satisfy at least the minimum University requirements for that particular degree.

Faculty
John N. Veenstra, PhD, PE, BCEE—Professor and Department Head
Professor/Orville L. and Helen Buchanan Endowed Chair: Carol Jones, PhD, PE
Regents Professor/Director, Biobased Products and Energy Center: Raymond L. Huhnke, PhD, PE
Professor/Sarkey's Professor/Assistant Director and State Program Leader, Agricultural Natural Resources, Oklahoma Cooperative Extension Service: Randal K. Taylor, PhD, PE

Director, Capital Projects for CASNR/Assistant Director, Oklahoma Agricultural Experiment Station: Randy L. Raper, PhD, PE
Professors: Hasan Atiyeh, PhD, PE; Danielle D. Bellmer, PhD; Timothy J. Bowser, PhD, PE; Nurhan Dunford, PhD, PE; Dan Thomas, PhD, PE; Ning Wang, PhD, PE; Paul Weckler, PhD, PE
Associate Professors: Robert Scott Frazier, PhD, PE; Douglas W. Hamilton, PhD, PE; Ajay Kumar, PhD, PE; Yu Mao, PhD
Adjunct Associate Professor: Derek Whitelock, PhD
Assistant Professors: John Long, PhD, PE; Saleh Taghvaeian, PhD, Ali Mirchi, PhD
Adjunct Assistant Professor: Sherry L. Hunt, PhD
Research Associate Professor: J. D. Carlson, PhD
Assistant Extension Specialist: Wesley Lee, MS
Teaching Assistant Professor: Sara Alian, PhD