MECHATRONICS AND ROBOTICS (MERO)

MERO 5000 Thesis Research
Prerequisites: Consent of instructor.
Description: Methods used in research and thesis writing. Same course as FSEP 5000. Offered for variable credit, 1-6 credit hours, maximum of 18 credit hours.
Credit hours: 1-6
Contact hours: Contact: 1-6 Other: 1-6
Levels: Graduate
Schedule types: Independent Study
Department/School: Engineering Technology

MERO 5013 Research Design & Methodology
Prerequisites: Consent of instructor.
Description: Overview of research design methods and skills necessary for conducting research projects, including: conceptualization and operationalization, literature review, deductive and inductive theorizing, hypothesis testing, quantitative and qualitative data collection and analysis, maintaining research records, experiment design, data validation, result presentation, and research ethics. Same course as FSEP 5013 and FEMP 5013.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5023 Project Management
Prerequisites: Consent of instructor.
Description: A systems approach to planning, organizing, scheduling and controlling projects. The behavioral and quantitative aspects of project management. Important of working with personnel as well as technology. Project management software utilized. Same course as FSEP 5023.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5033 Principles of Industrial and Process Safety
Prerequisites: 30 credit hours of STEM coursework or instructor consent.
Description: Fundamentals of chemical release, dispersion, toxicity, fire, and explosion. Process safety design to mitigate consequences of catastrophic fire and explosion. Same course as FSEP 5133.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5060 Emerging Topics in Engineering Technology
Prerequisites: Consent of instructor.
Description: Advanced and emerging topics normally not included in existing MSET program. Repeat credit may be earned with different course subtitles assigned. Same course as FSEP 5060. Offered for fixed credit, 3 credit hours, maximum of 6 credit hours.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5070 Directed Studies
Prerequisites: Consent of instructor.
Description: Individual report topics in processes, equipment, experiments, literature search, theory, computer use or combinations or these. Offered for variable credit, 2-4 credit hours, maximum of 4 credit hours. Same as FSEP 5990.
Credit hours: 2-4
Contact hours: Contact: 2-4 Other: 2-4
Levels: Graduate
Schedule types: Independent Study
Department/School: Engineering Technology

MERO 5113 Mechatronic Systems I
Prerequisites: Consent of instructor.
Description: Applications of mechatronics, basic building blocks of mechatronics systems, electronic components, mechanical components, interface between electronic and mechanical components, and considerations of mechatronics system design.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5123 Mechatronic Systems II
Prerequisites: MERO 5113 or equivalent.
Description: Modeling of mechanical, electrical, and hydraulic components and robotic manipulators. Mechatronic control systems design, electro-hydraulic drives, electrical drives, robotic manipulator and intelligent control design.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5133 Mechatronic System Hardware and Software Integration
Prerequisites: MERO 5113.
Description: This course offers a comprehensive foundation for computer-based analysis of signals, digital and analog communication to support mechatronic application and troubleshooting. Various computing tools for mechatronic systems development such as MATLAB, LABVIEW, and ROS, will be introduced with a focus on software and hardware integration.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit hours</th>
<th>Contact hours</th>
<th>Levels</th>
<th>Schedule types</th>
<th>Department/School</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERO 5213</td>
<td>Introduction to Robot Dynamics and Kinematics</td>
<td>MERO 5113</td>
<td>This is an introductory course on robotics. The course introduces technology students with the modeling of robotics manulators. Dynamics and kinematics of industrial robots. Sensing and actuation systems used in the industry.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate</td>
<td>Lecture</td>
<td>Engineering Technology</td>
</tr>
<tr>
<td>MERO 5313</td>
<td>Linear Control Systems for Mechatronics</td>
<td>MERO 5113</td>
<td>The course is an application specific course. Applications of feedback control in mechatronics, mathematical models of mechatronics systems and components, time-domain analysis, and stability, and state-variable models of feedback systems.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate</td>
<td>Lecture</td>
<td>Engineering Technology</td>
</tr>
<tr>
<td>MERO 5323</td>
<td>Intelligent Control of Mechatronic Systems</td>
<td>MERO 5123</td>
<td>The course introduces students with applications machine intelligence for control of mechatronic systems. Topics covered are neural network control, fuzzy logic control, and other evolutionary control approaches in mechatronics. The course will also introduce machine vision and image processing for mechatronic applications.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate</td>
<td>Lecture</td>
<td>Engineering Technology</td>
</tr>
<tr>
<td>MERO 5413</td>
<td>Robotic Underwater Vehicles</td>
<td>MERO 5213 or consent of instructor.</td>
<td>Analyze the current design of a robotic underwater vehicle and contribute a substantial design improvement.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate</td>
<td>Lecture</td>
<td>Engineering Technology</td>
</tr>
<tr>
<td>MERO 5423</td>
<td>Engineering Acoustics</td>
<td>Graduate standing, department permission required or consent of instructor.</td>
<td>The course will introduce the basic concepts of computation through modeling and simulation that are increasingly being used by designers, architects, planners, and engineers to shorten design cycles, innovate new products, and evaluate designs and simulate the impacts of alternative approaches. Students will use COMSOL® Multiphysics, a commercially available finite-element modeling software, to explore a range of programming and modeling concepts while acquiring those skills.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate</td>
<td>Lecture</td>
<td>Engineering Technology</td>
</tr>
</tbody>
</table>
MERO 5713 Advanced CAD for Electro-Mechanical Systems
Description: Advanced computer-aided design methodologies and processes for mechatronic system. Design methodologies on electronic, mechanical components, and whole system will be taught using state-of-the-art technologies and modules in CAD system.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5723 Mechanism Design with CAD
Prerequisites: Consent of instructor
Description: Mechanism design of robotic and mechatronic components and systems. Kinematic and kinetic studies using analysis module in a CAD program.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology

MERO 5733 Advanced Vibration for Electro-Mechanical Systems
Prerequisites: Consent of instructor.
Description: Analysis, modeling and control of electro-mechanical systems vibrations with an emphasis on practical applications. Mechanical system design methods for noise and vibration mitigation.
Credit hours: 3
Contact hours: Lecture: 3 Contact: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Engineering Technology