BIOMEDICAL SCIENCES (BIOM)

BIOM 5000 Research & Thesis
Prerequisites: Consent of major adviser.
Description: Research in biomedical sciences for MS degree. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Biomedical Sciences

BIOM 5003 Statistics for Medical Residents
Prerequisites: Employed as a medical resident or permission of instructor
Description: Survey of statistical methodology relevant to health care professionals. Basic understanding of statistics presented in recent medical literature. Hypothesis testing, ANOVA techniques, regression, categorical techniques. Same course as STAT 5003.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5010 Special Topics in Biomedical Sciences
Description: Provides an overview of current issues in biomedical sciences.
Credit hours: 1-3
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5013 Medical Biostatistics
Prerequisites: Graduate standing.
Description: Fundamentals of biostatistics, including parametric and non-parametric statistical methods with applications to biomedical research, clinical epidemiology and clinical medicine.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5020 Biomedical Sciences Seminar
Prerequisites: Graduate standing.
Description: Literature and research problems in biomedical sciences. Offered for variable credit, 1-15 credit hours, maximum of 15 credit hours.
Credit hours: 1-15
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5116 Clinical Anatomy
Prerequisites: Graduate standing in the biomedical sciences program.
Description: Presents gross structure of the human body using a regional approach. Topics include topographical and functional anatomy, clinical correlations, and introduction to radiology. The course provides the descriptive basis for understanding human structure and function encountered in succeeding courses and medical practice. Previously offered as BIOM 5118.
Credit hours: 6
Contact hours: Lecture: 4 Lab: 4
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 5122 Clinical Anatomy for Allied Healthcare
Description: Gross structures of the human body using a regional approach including topographic and functional anatomy, and clinical correlations as appropriate for athletic trainers and allied healthcare professionals. Descriptive basis for understanding human structure and function encountered in professional practice.
Credit hours: 2
Contact hours: Lecture: 1 Lab: 3
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 5133 Neuroanatomy
Prerequisites: Graduate standing in the biomedical sciences program.
Description: A continuation of gross anatomy to include anatomy of the head region. Emphasis on neuroanatomy. Laboratory sessions on head and brain dissection and special demonstrations. The relation of basic principles with osteopathic medicine and neurology in clinical correlation sessions. Previously offered as BIOM 5132.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5215 Medical Biochemistry
Description: Broad survey of the chemical classes and metabolic processes that are consistent with the normal functions of biosystems. Functions and interrelationships of these processes in human metabolism to provide a foundation for understanding the chemistry of disease states when discussed in the second-year program.
Credit hours: 5
Contact hours: Lecture: 5
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 5316 Medical Microbiology and Immunology
Prerequisites: BIOM 5215.
Description: Similarities and differences among pathogenic microorganisms. Characteristics, pathogenesis and control of medically important microorganisms and disorders of the immune system. Laboratory exercises on the basic serological and microbiological procedures used in the diagnosis of infectious diseases.
Credit hours: 6
Contact hours: Lecture: 6
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Department/School</th>
<th>Schedule types</th>
<th>Credit hours</th>
<th>Contact hours</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM 5616</td>
<td>Graduate Biomedical Physiology</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>6</td>
<td>6</td>
<td>BIOM 5215.</td>
</tr>
<tr>
<td></td>
<td>Description: The integration of structure and function of the human</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>body with a functional analysis of the organ systems. Comprehension of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>physiologic principles and control mechanisms that maintain homeostasis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion of all systems of the body and analysis of various interrelationships.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The fundamental dynamic view of physiology upon which subsequent clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learning is dependent. Problem solving techniques utilized to develop and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>examine student understanding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5621</td>
<td>Introduction to Translational Research</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Focuses on biomedical and clinical research from bench to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bedside and back. Provides examples of how basic science and clinical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>observations lead to translational research.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5631</td>
<td>Disease Research in Medicine</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>1</td>
<td>1</td>
<td>Biomedical Foundations or equivalent. Permission of instructor.</td>
</tr>
<tr>
<td></td>
<td>Description: Introduction to selected diseases of priority in medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and to funding agencies. Includes discussing current clinical and research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>challenges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5641</td>
<td>Cornerstones of Vertebrate Paleontology</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: In-depth discussion of topics in Vertebrate Pathology,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasizing critical thinking skills. Based on evaluation of the primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>literature, and covering diverse methodological approaches to interdisciplinary research questions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5653</td>
<td>Evolutionary Physiology</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
<td>BIOM 4893 or DHM/IEM 4893 or consent of instructor.</td>
</tr>
<tr>
<td></td>
<td>Description: Survey course that covers the basic physiology of, mainly,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mammalian species. Uses an evolutionary approach that integrates form with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>function by outlining the evolutionary sequences thought to have resulted in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modern organ structures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5663</td>
<td>Graduate Pharmacology</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides an enriched understanding of the mechanism of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>actions of pharmacological agents used to treat human diseases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5672</td>
<td>Scientific Outreach Training for Graduate Students</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides interactive opportunities with elementary school-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aged children with a particular emphasis on developing an understanding of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the scientific method as a strategy for real-life problem-solving.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5683</td>
<td>Chronic Inflammation and Cancer Development</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides insight that describes the issues of chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inflammation, auto-immune and cancer development.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5693</td>
<td>Principle Concepts of Cellular and Molecular Immunology</td>
<td>Biomedical Sciences</td>
<td>Lecture</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Introduces and explores basic concepts of immunology with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cellular and molecular components that play a role in normal and disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>states.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5703</td>
<td>Applied Multivariate and Evolutionary Analysis of Paleontological Data</td>
<td>Biomedical Sciences</td>
<td>Lecture, Lab,</td>
<td>3</td>
<td>2 Lab: 2</td>
<td>Course in statistics and basic understanding of programming strongly recommended.</td>
</tr>
<tr>
<td></td>
<td>Description: Provides an overview of common statistical, evolutionary</td>
<td>Combined lecture and lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>modeling, and phylogenetic comparative methods for the analysis of field-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and character-based paleontological datasets. Each week, students will</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>receive a methods overview, which will then be followed by a laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>exercise conducted using example datasets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 5963</td>
<td>Case Studies in Medical Smart Garment Engineering</td>
<td>Biomedical Sciences</td>
<td>Lecture, Lab,</td>
<td>3</td>
<td>1 Lab: 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Designed to activate critical thinking skills needed for</td>
<td>Combined lecture and lab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problem solving in wearable sensing system development. Same course as</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DHM 5963.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIOM 5984 Capstone in Medical Smart Garment Engineering
Prerequisites: BIOM or DHM 5963 and three credits of chosen emphasis area.
Description: Project-based where interdisciplinary teams identify a wearable sensing application and collaborate to engineer a prototype that addresses a defined need. Industry collaboration encouraged. Same course as DHM 5984.
Credit hours: 4
Contact hours: Lecture: 1 Lab: 6
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 6000 Research and Dissertation
Prerequisites: Consent of major adviser.
Description: Research in biomedical sciences for PhD degree. Offered for variable credit, 1-15 credit hours, maximum of 45 credit hours.
Credit hours: 1-15
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Biomedical Sciences

BIOM 6010 Topics in Biomedical Sciences
Prerequisites: Consent of instructor.
Description: Tutorials in areas of biomedical sciences not addressed in other courses. Offered for variable credit, 1-3 credit hours, maximum of 9 credit hours.
Credit hours: 1-3
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6013 Educational Methods in the Biomedical Sciences
Prerequisites: Graduate standing.
Description: Introduces graduate students to a full range of faculty roles and responsibilities related to instructional methods used at the health sciences center.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6023 Research Methods And Design
Prerequisites: Graduate standing.
Description: Introduction to concepts of research design, methodology, sampling techniques, internal and external validity, and the scientific method.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6175 Molecular And Cellular Biology
Prerequisites: Consent of course coordinator.
Description: Cell biology, including cellular macromolecules, energetics, metabolism, regulation, organization and function of cellular organelles, flow of genetic information, and the regulation of selected cell activities.
Credit hours: 5
Contact hours: Lecture: 5
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6183 Cellular and Molecular Biology of Pain
Prerequisites: BIOM 5133 or BIOM 5616.
Description: An understanding of the cellular and molecular events that occur in the initiation and transmission of nociceptive (painful) sensory signaling.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6193 Paleommalogy
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6214 Advanced Topics in Medical Biochemistry
Prerequisites: BIOM 5215 or concurrent enrollment.
Description: Chemical basis of protein, carbohydrate, lipid, nucleic acid, steroid and porphyrin structure, function, and metabolism as related to health and disease. Offered for variable credit, 3-15 credit hours, maximum of 15 credit hours.
Credit hours: 4
Contact hours: Lecture: 4
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6233 Enzyme Analysis
Prerequisites: BIOM 6214.
Description: Characteristics, separation, detection, assays, kinetics, mechanisms of catalysis, inhibition or inactivation, and clinical applications of enzyme analysis.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 6243 Human Nutrition
Prerequisites: BIOM 5215.
Description: Role of vitamins and minerals in maintaining normal metabolism, role of nutrients in providing athletic and immune system performance, and pathophysiology associated with nutrient deficits and nutrient excesses. Role of drugs in inducing cancer and increasing nutrient requirements.
Credit hours: 3
Contact hours: Lecture: 3 Lab: 0
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences
BIOM 6263 Techniques in Molecular Biology
Prerequisites: BIOM 5215, BIOM 5316, consent of instructor.
Description: Transformation of bacterial and mammalian cells; purification of nucleic acids; cloning of DNA fragments; labeling of nucleic acids with non-radioactive probes; analysis of DNA and RNA by electrophoresis and hybridization; DNA sequencing; design, synthesis and use of oligonucleotides; site-directed mutagenesis; detection of rare nucleic acids by the polymerase chain reaction and expression of proteins.
Credit hours: 3
Contact hours: Lecture: 1 Lab: 4
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 6333 Immunology
Prerequisites: BIOM 5215, BIOM 5316.
Description: The experimental basis of immunology and immunopathology.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6343 Microbial Physiology
Prerequisites: BIOM 5215, BIOM 5316.
Description: The chemical composition, growth and metabolism of prokaryotic organisms including regulation and control of metabolic pathways with emphasis on metabolism unique to microbes.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 6523 Cardiovascular Physiology and Pharmacology
Prerequisites: BIOM 5513, BIOM 5523.
Description: Physiologic and pharmacologic mechanisms of cardiac and vascular smooth muscle function and control at the molecular, cellular, tissue and organ system levels.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6543 Environmental Toxins in the Brain
Description: Introduces the fundamental aspects of neurotoxicology using both cellular and molecular approaches in neurochemistry and toxicology.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6613 Environmental Physiology
Prerequisites: BIOM 5616.
Description: Environmental parameters, including barometric pressure, temperature, light, gravity, noise, and crowding, having an impact on homeostatic mechanisms in the normal human with special emphasis on acute and chronic adaptations in response to changes in environmental parameters.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences
BIOM 6643 Neurophysiology
Prerequisites: BIOM 5616.
Description: Fundamental concepts of the motor and sensory components of the nervous system with emphasis on integrative mechanisms.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6653 Graduate Seminar In Signal Transduction
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6662 Research Ethics and Survival Skills for the Biomedical Sciences
Prerequisites: Graduate standing.
Description: Provides a basic framework for scientific conduct and practice and the skills needed for a career in the biomedical sciences.
Credit hours: 2
Contact hours: Lecture: 2
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6663 Neuroethology
Prerequisites: Permission of instructor.
Description: This course is designed to provide an analysis of the neuroendocrine basis of behavior. Lectures will serve as the format of presentation to provide a sound understanding of the neuroethological concepts discussed.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6673 Genomics
Prerequisites: BIOM 6175.
Description: The course begins with a review of molecular biology and then proceeds to the structure and organization of eukaryotic, prokaryotic, and organelle genomes. Techniques in dividing, sequencing, annotating, and mapping genomes are studied as well as those of global gene expression profiling. The course finishes with a look at the many applications of genomics in biomedical science and disease.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6703 Advanced Gross Anatomy
Prerequisites: Consent of course coordinator.
Description: General and specific concepts of regional human anatomy. The primary focus is the range of normal for all organ systems and interrelationships. Provides an advanced descriptive basis for understanding human structure and function encountered in succeeding courses and in the practice of teaching gross anatomy to graduate and medical students.
Credit hours: 5
Contact hours: Lecture: 3 Lab: 4
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Biomedical Sciences

BIOM 6723 Field Techniques in Vertebrate Paleontology
Description: This course introduces students to techniques and tools necessary to conduct field work in vertebrate paleontology. The primary techniques will include mapping, prospecting and collecting both micro- and macrofossil vertebrate remains. Processing of rock matrix with microvertebrates will be emphasized, but preparation of macrofossil remains for transportation to the research lab will be taught.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6733 Microbial Pathogenesis
Prerequisites: BIOM 6791/PCME 8791, consent of instructor.
Description: An in-depth introduction to the fundamental principles and molecular mechanisms by which microbes cause disease in humans. Focuses on current research and provides a comprehensive overview of the molecular basis of pathogenesis with a focus on prokaryotic and eukaryotic model microbial systems to illustrate mechanisms of disease pathogenesis. Discusses the role of the microbiome in health and disease.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6743 Foundations in Medical Genetics, Molecular Biology and Development
Description: Human genetics and development, including structure and function of nucleic acids, gene regulation, basis of inheritance, and development of the human embryo.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6752 Foundations in Medical Cell and Tissue Biology
Description: Structure and function of cells within tissues as it relates to human health and disease, including cell transport, cell-to-cell communication and organ system control.
Credit hours: 2
Contact hours: Lecture: 2
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences
BIOM 6762 Foundations in Medical Biochemistry
Description: Biochemistry in human health and disease, including protein structure and function, bioenergetics, metabolism, nutrition, and membrane structure and function.
Credit hours: 2
Contact hours: Lecture: 2
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6771 Foundations in Medical Pharmacology
Description: General principles of pharmacokinetics and pharmacodynamics of drugs used to treat human disease.
Credit hours: 1
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6781 Foundations in Medical Immunology
Description: Immune system in human health and disease, including antibody and cell-mediated immune responses, inflammation, immune responses to infectious agents and allergens, immunodeficiencies and malignancies of the immune system.
Credit hours: 1
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6791 Foundations in Medical Microbiology
Description: Infectious agents, including viruses, bacteria, fungi and parasites, their structure, genetics and mechanisms of pathogenesis in human disease.
Credit hours: 1
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6800 Critical Readings in Biomedical Sciences
Description: Provides experience with the primary literature in biomedical sciences, with training in evaluation methodologies, experimental design, data presentation, and statistical designs. Previously offered as BIOM 6802. Offered for variable credit, 1-3 credit hours, maximum of 3 credit hours.
Credit hours: 1-3
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6820 Structure and Function of the Human Gastrointestinal/Hepatic System
Prerequisites: Permission of Instructor.
Description: Provides integrated biomedical study of the human gastrointestinal and hepatic systems. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 1-6
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6830 Biomedical Perspectives on Human Hematology
Prerequisites: Permission of Instructor.
Description: Provides integrated biomedical study of the human blood and lymphatics, and associated disorders. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.
Credit hours: 1-5
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6840 Structure and Function of the Human Musculoskeletal System
Prerequisites: Permission of Instructor.
Description: Provides integrated biomedical study of the human musculoskeletal system and associated disorders. Offered for variable credit, 1-6 credit hours, maximum of 5 credit hours.
Credit hours: 1-6
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6850 Structure and Function of the Human Renal System
Prerequisites: Permission of Instructor.
Description: Provides integrated biomedical study of the human renal system. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.
Credit hours: 1-5
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences

BIOM 6860 Structure and Function of the Human Reproductive Systems and Reproductive Biology
Prerequisites: Permission of Instructor.
Description: Provides integrated biomedical study of the male and female human reproductive systems and reproductive biology. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.
Credit hours: 1-5
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Lecture
Department/School: Biomedical Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM 6870</td>
<td>Structure and Function of the Human Respiratory System</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides integrated biomedical study of the human respiratory system. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6880</td>
<td>Biomedical Perspectives on Psychiatry</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Permission of Instructor. Provides clinical presentation, differential diagnosis, etiology (including pathophysiological etiologies), basic pharmacology of medications used to treat the disorder, clinical pharmacology, and psychosocial treatments. Offered for variable credit, 1-3 credit hours, maximum of 3 credit hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6893</td>
<td>Fundamentals of Medical Smart Garment Engineering</td>
<td>90+ hours or Graduate standing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Students will gain elementary knowledge in focus areas of health science, biomedical sensing and analysis, and apparel design necessary to undertake the development of wearable electronic sensing systems. Lecture and laboratory based instruction. May not be used for degree credit with DHM 4893 or IEM 4893 or 5893.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 2 Lab: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lab, Lecture, Combined lecture and lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6900</td>
<td>Structure and Function of the Human Endocrine System</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides integrated biomedical study of the human endocrine system, and associated disorders. Offered for variable credit, 1-5 credit hours, maximum of 5 credit hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6910</td>
<td>Structure and Function of the Human Nervous System</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides integrated biomedical study of the human nervous system. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 1-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6922</td>
<td>Scientific Communication in Biomedical Sciences</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Provides experience in scientific writing and oral presentations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6933</td>
<td>Cornerstones of Graduate Biomedical Sciences</td>
<td>Permission of Instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Discussion of topics in the foundational courses of biomedical sciences, emphasizing critical thinking skills and diverse methodological approaches in understanding interdisciplinary research questions and in evaluations of the primary literature. Intended to be taken concurrently with foundation courses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6943</td>
<td>Advanced Vertebrate Paleontology</td>
<td>Undergraduate level understanding of vertebrate paleontology, biology, and evolution.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Explores vertebrate evolution in a phylogenetic, ontogenetic, and stratigraphic framework using selected peer reviewed articles. Students will lead discussions and practice critical thinking skills to address topics presented. Students will apply what they have learned to lead dissections of specimens belonging to a specific extant phylogenetic bracket.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1 Other: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Discussion, Combined lecture & discussion, Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6952</td>
<td>Paleohistology Techniques</td>
<td>Undergraduate level understanding of biology, evolution, and histology.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Recognize and interpret modern and fossil bone tissue microstructures. The contributions of paleohistology to understanding extinct vertebrate physiology will be explored through discussions of peer reviewed articles. Students will receive hands-on training in paleohistology techniques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOM 6962</td>
<td>Evolutionary Biomechanics</td>
<td>BIOM 5116 or HHP 2654 or ZOOL 3114.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description: Evaluation of topics covering the application of engineering principles to biological systems in an evolutionary framework. Topics will examine the material properties of anatomical tissues, how forces act internally and externally on organisms and their structures, kinematics, and biomechanical model systems. Primary literature and experimental designs will also be explored.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit hours: 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact hours: Lecture: 1 Other: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Graduate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schedule types: Discussion, Combined lecture & discussion, Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department/School: Biomedical Sciences</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Codes: BIOM 6870, BIOM 6880, BIOM 6893, BIOM 6900, BIOM 6910, BIOM 6922, BIOM 6933, BIOM 6943, BIOM 6952, BIOM 6962