The goal of the department is to meet societal needs for food, fiber, energy, and intrinsic value related to the conservation and management of plant and soil resources. Teaching, research and extension efforts are designed to spur innovation and provide understanding regarding management of agricultural and environmental resources to increase long-term sustainability food production systems.

Undergraduate students select an option of study from: agronomic business, crop production and management, plant biotechnology and improvement, or soil and water resources. Students may choose to specialize in an area such as: entrepreneurship, forage and livestock production, pest management, plant genetics, precision agriculture, or environmental management. In addition, students can fulfill prerequisites for professional programs such as pharmacy school. Students interested in professional certification will complete the necessary course requirements in their degree programs. Students have flexibility to work with their academic advisers to develop a plan of study to suit their interests. Many undergraduate students work with the research faculty on projects providing the student an opportunity to assist in gathering new information related to plant breeding and genetics, biotechnology, environmental remediation, plant physiology, crop production, weed science, soil nutrient management, soil chemistry, soil physics, water quality, and land restoration.

Upon completion of a Bachelor of Science program, students are employed by private firms, public institutions, state and federal agencies, or non-profit organizations that require personnel with expertise in plant and soil systems. Typical careers include: federal employment in soil and rangeland conservation; crop consulting; technical sales and service for seed, fertilizer or agricultural chemical supply companies; farm or ranch operation; research positions as plant and soil scientists with federal agencies, state agricultural experiment stations or private industries; teaching and extension positions with colleges and universities; and a broad range of employment or ownership in retail businesses supplying feed, seed, grain, fertilizers, equipment, agricultural chemicals and other agricultural supplies and services. Demand for individuals with experience in plant and soil sciences will continue as long as society demands a safe, secure food supply balanced with a desire to conserve natural resources.

Minor in Agronomy or Soil Science

The Department of Plant and Soil Sciences offers two minors, Agronomy (24 hours) and Soil Science (19 hours). Students pursuing a minor in Agronomy will take courses in areas that are most important for understanding the science of crop production, including genetics and biotechnology, weed science, and nutrient management in order to prepare them for careers that support crop production. The Soil Science minor has a great deal of flexibility (12 credits of controlled electives) that will allow students to explore diverse aspects of soils ranging from chemistry to conservation while helping them prepare for a variety of environment-related careers.

Courses

PLNT 1101 Orientation to Plant and Soil Sciences

Description: Introduction to areas of study, professional activities and career opportunities in plant and soil sciences.

Credit hours: 1

Contact hours: Lecture: 1

Levels: Undergraduate

Department/School: Plant & Soil Sciences

PLNT 1213 Introduction to Plant and Soil Systems

Description: Introduction to the concepts of plant and soil systems including cropland, rangeland and pastureland. A systems approach to the importance of plant and soil resources to the producer, consumer and citizen; modern management and production practices; maintenance of natural resources. Previously offered as AGRN 1213.

Credit hours: 3

Contact hours: Lecture: 3

Levels: Undergraduate

Department/School: Plant & Soil Sciences

PLNT 2013 Applied Plant Science

Prerequisites: PLNT 1213 or BOT 1404 or FOR 1123 or HORT 1013.

Description: Application of agronomic principles to the management, improvement and use of plants. Structure and growth of crop plants relating to management strategies and adaptation to varying abiotic and biotic factors. Hands-on identification of crops, weeds, and seed quality factors; application of tools and techniques. Previously offered as PLNT 2012 and AGRN 2012.

Credit hours: 3

Contact hours: Lecture: 2 Lab: 2

Levels: Undergraduate

Department/School: Plant & Soil Sciences

PLNT 2041 Career Development in Plant and Soil Sciences

Prerequisites: Sophomore standing in plant and soil sciences.

Description: Develop personal goals in plant and soil sciences through identification of personal values, skills building, exploring professional opportunities, and networking. Graded on pass-fail basis. Previously offered as AGRN 2041.

Credit hours: 1

Contact hours: Lecture: 1

Levels: Undergraduate

Department/School: Plant & Soil Sciences

PLNT 3554 Plant Genetics and Biotechnology

Prerequisites: BIOL 1114.

Description: Basic principles of heredity. Interrelationship between classical genetics and molecular genetics emphasized. Mendelian genetics, cytogenetics, mutations, gene regulation and genetic engineering. Previously offered as AGRN 3554.

Credit hours: 4

Contact hours: Lecture: 3 Lab: 2

Levels: Graduate, Undergraduate

Department/School: Plant & Soil Sciences
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Description</th>
<th>Credit hours</th>
<th>Contact hours</th>
<th>Levels</th>
<th>Schedule types</th>
<th>Department/School</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT 3790</td>
<td>Seed and Plant Identification</td>
<td>PLNT 1213.</td>
<td>Identification and classification of agronomically important crop and weed species from seed and from seedling, vegetative, flowering or mature plants. Offered for fixed credit, 1 credit hours, maximum of 2 credit hours.</td>
<td></td>
<td></td>
<td>Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4013</td>
<td>Principles of Weed Science</td>
<td>PLNT 1213 or HORT 1013.</td>
<td>Basic principles of weed biology and ecology, introduction to herbicide chemistry, and methods for preventative, cultural, mechanical, chemical, and biological weed management in cropping systems, turf, and natural landscapes. Laboratories are applied and will include weed identification, calibration of field equipment, applied grower problems, and herbicide damage identification. Previously offered as PLNT 3113 and PLNT 3211.</td>
<td>3</td>
<td>2</td>
<td>Undergraduate</td>
<td>Lab, Lecture, Combined lecture and lab</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4080</td>
<td>Professional Internship</td>
<td>Consent of instructor.</td>
<td>Internship must be at an approved agribusiness unit or other agency serving agronomic agriculture. Requires a final conference with on campus adviser and a written report. Previously offered as AGRN 4080. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.</td>
<td>1-6</td>
<td>1</td>
<td>Undergraduate</td>
<td>Independent Study</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4113</td>
<td>Advanced Weed Science</td>
<td>PLNT 3111 and PLNT 3221.</td>
<td>Integrated approach for weed management. Weed life cycles and biology, weed crop interferences, herbicide families and their characteristics, and finally a systematic and integrated weed management system. Methods of conducting and interpreting research results in appropriate topics. Previously offered as AGRN 4113.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4123</td>
<td>Plant-Environment Interactions</td>
<td>BOT 1404.</td>
<td>Environmental impact on plant life cycle; (i.e. germination, flowering and senescence); plant growth responses (e.g. photosynthesis, phototropism, biomass production) to light quality, precipitation, temperature, and population or community changes. Previously offered as AGRN 4123.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate, Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4133</td>
<td>Temperature Stress Physiology</td>
<td>BIOC 3653 and BOT 3463 or HORT 4963.</td>
<td>Effects of heat, chilling and freezing stress on plants. Responses to temperature extremes at the molecular to whole plant levels with emphasis on mechanisms of injury and resistance. Same course as HORT 4133. Offered in combination with HORT 5133 and PLNT 5133. May not be used for degree credit with HORT 5133 and PLNT 5133.</td>
<td>3</td>
<td>Other: 3</td>
<td>Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4353</td>
<td>Plant Breeding</td>
<td>PLNT 3554 or equivalent.</td>
<td>Basic principles dealing with the improvement of plants through application of genetic principles. Previously offered as AGRN 4353.</td>
<td>3</td>
<td>Lecture: 3</td>
<td>Graduate, Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 4470</td>
<td>Problems and Special Study</td>
<td>Consent of instructor.</td>
<td>Problems in plant science selected from topics in range and turf, plant breeding and genetics, crop management and physiology, and weed control. Previously offered as AGRN 4470. Offered for variable credit, 1-3 credit hours, maximum of 12 credit hours.</td>
<td>1-3</td>
<td>Other: 1</td>
<td>Undergraduate</td>
<td>Independent Study</td>
<td>Plant & Soil Sciences</td>
</tr>
<tr>
<td>PLNT 5133</td>
<td>Professional Preparation in Plant and Soil Sciences</td>
<td>Consent of instructor.</td>
<td>Senior standing in plant and soil sciences. Preparation for professional certification exams and career opportunities in plant and soil sciences. Same course as SOIL 4571. Previously offered as AGRN 4571.</td>
<td>1</td>
<td>Lecture: 1</td>
<td>Undergraduate</td>
<td>Lecture</td>
<td>Plant & Soil Sciences</td>
</tr>
</tbody>
</table>
PLNT 4573 Bioenergy Feedstock Production
Prerequisites: PLNT 1213.
Description: Understand production and management practices for potential bioenergy feedstocks. Distinguish feedstock sources and end products. Identify physiological mechanisms to improve yield and quality under current and future climates. Use simulation and GIS tools to project biomass and ethanol yields.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 4613 Forage and Grazinglands Resource Management
Prerequisites: PLNT 1213 or BOT 1404.
Description: Designing forage systems that optimize yield potential, economical livestock production and pasture system development. Previously offered as RLEM 4613, PLNT 3213, and AGRN 4613.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 4923 Applications of Biotechnology in Pest Management
Prerequisites: BIOL 1114 and CHEM 1215 or equivalents.
Description: Applications of biotechnology in managing arthropod pests of plants, animals, plant pathogens, and weeds. Introduction to underlying technology, products being developed and deployed, effectiveness and associated problems or concerns resulting from their use. Same course as ENTO 4923, PLP 4923, and PLNT 4922.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 4933 Plant Biotechnology and Transgenic Plants
Prerequisites: PLNT 3554 or ANSI 3423 or BIOL 3023.
Description: Principles and techniques in generating transgenic plants with improved agronomic traits. Controversies and consumer concerns over transgenic plants, biotechnology regulations and global status of biotech crops. Basic plant biotechnology techniques in recombinant DNA cloning, transformation, and tissue culture.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2
Levels: Graduate, Undergraduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Plant & Soil Sciences

PLNT 4990 Senior Thesis in Plant and Soil Sciences
Prerequisites: Consent of instructor.
Description: Supervised undergraduate research in topics related to plant and soil sciences. Completion of an approved research project based on a thesis topic in plant or soil science will include submission of a written report and a public defense of the work. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Undergraduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 5000 Master's Thesis
Prerequisites: Consent of advisor.
Description: Research planned, conducted and reported in consultation with a major professor. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 5020 Graduate Seminar
Prerequisites: Graduate standing.
Description: Discussions of research philosophy, methods, interpretation and presentations. Profession development and contributions to the scientific community. Same course as SOIL 5020. Offered for fixed credit, 1 credit hour, maximum of 3 credit hours.
Credit hours: 1
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 5110 Problems and Special Study
Prerequisites: Consent of instructor.
Description: Supervised study of special problems and topics not covered in other graduate courses. Previously offered as AGRN 5110. Offered for variable credit, 1-4 credit hours, maximum of 12 credit hours.
Credit hours: 1-4
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 5133 Temperature Stress Physiology
Prerequisites: BIOL 3653 and BOT 3463 or HORT 4963.
Description: Effects of heat, chilling and freezing stress on plants. Responses to temperature extremes at the molecular to whole plant levels with emphasis on mechanisms of injury and resistance. Same course as HORT 5133. Offered in combination with HORT 4133 and PLNT 4133. May not be used for degree credit with HORT 4133 and PLNT 4133.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5230 Research
Prerequisites: Consent of a faculty member supervising the research.
Description: Supervised independent research on selected topics. Offered for variable credit, 1-4 credit hours, maximum of 8 credit hours.
Credit hours: 1-4
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 5230 Research
Prerequisites: Consent of a faculty member supervising the research.
Description: Supervised independent research on selected topics. Offered for variable credit, 1-4 credit hours, maximum of 8 credit hours.
Credit hours: 1-4
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences
PLNT 5293 Plant Response to Water Stress
Prerequisites: BIOC 3653, BOT 3463.
Description: Physiological ramifications of water deficit stress on cells, tissues, plants and canopies. Discussion of the soil/plant/atmosphere continuum, and avoidance and tolerance mechanisms leading to drought resistance. Photosynthesis, transpiration, and water-use efficiency and their relationship to biomass accumulation and crop yield. Previously offered as AGRN 5293.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5313 Simulation Models in Research, Management and Policy
Prerequisites: PLNT 1213.
Description: Use crop simulation models (CSM) and decision support systems to address challenges associated with food, fuel, feed and fiber production. Utilize CMS as research, management, and policy tools. Evaluate CSM as surrogates to field studies and to design experiments to fill in knowledge gaps.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5403 Physiological Action of Herbicides
Prerequisites: BOT 3463.
Description: The mode of action, uptake and translocation, and metabolism of herbicides in crops and weeds. Previously offered as AGRN 5403.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5412 Plant Breeding Methods
Prerequisites: PLNT 3554 or PLNT 4353 or consent of instructor.
Description: Development and application of genetic principles to breeding methodology of self- and cross-pollinated crops; emphasis on selection methods pertinent to plant improvement; methods of new cultivar development, release, and commercialization. Previously offered as PLNT 5414.
Credit hours: 2
Contact hours: Lecture: 2
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5433 Biotechnology in Plant Improvement
Prerequisites: PLNT 3554, PLNT 4353, and BIOL 3014 or consent of instructor.
Description: Use of emerging technologies in cell biology and molecular genetics to study and manipulate plants. Emphasis on genetic systems which influence productivity and end-product utilization. The integration of biotechnology into plant breeding programs and issues concerning the release of genetically engineered organisms into the environment. Previously offered as AGRN 5433.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 5453 Applied Plant Genomics
Prerequisites: PLNT 3554 or BIOL 3023.
Description: Use and application of genomic knowledge and technology to improve agriculturally important plants. Major topics include structural and comparative genomics and their application in molecular breeding of agronomic crops.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

PLNT 6000 Doctoral Thesis
Prerequisites: Consent of adviser.
Description: Independent research to be conducted and reported with the supervision of a major professor as partial requirement for the PhD degree. Offered for variable credit, 1-6 credit hours, maximum of 36 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 6010 Advanced Topics and Conference
Prerequisites: MS degree.
Description: Supervised study of advanced topics. A reading and conference course designed to acquaint the advanced student with fields not covered in other courses. Offered for variable credit, 1-6 credit hours, maximum of 12 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

PLNT 6410 Topics in Plant Breeding and Genetics
Prerequisites: Consent of instructor.
Description: Selected topics in the statistical and experimental analysis of quantitative traits, evolutionary development of domesticated plants and animals, and techniques used in breeding crop plants. Previously offered as AGRN 6410. Offered for variable credit, 1-3 credit hours, maximum of 6 credit hours.
Credit hours: 1-3
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences
SOIL 1113 Land, Life and the Environment (N)
\textbf{Description:} Provide information about soils at local, regional, national, and global scales as well as basic soil properties and how they are influenced by human activity. Discussion topics include soil's importance to world food security and human health, agricultural production, environmental quality, and sustainable ecosystems. Students will gain practical knowledge of sustainable soil management in support of the production and ecological regulator functions of the soils.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences
\textbf{General Education and other Course Attributes:} Natural Sciences

SOIL 2124 Fundamentals of Soil Science (N)
\textbf{Prerequisites:} CHEM 1215 or CHEM 1314 or CHEM 1414.
\textbf{Description:} Introduction to soil physical, chemical and biological properties and processes necessary in formulating land use decisions related to agricultural, engineering and environmental concerns. Soil formation, classification and conservation. Analysis/evaluation of soils in field and laboratory settings. Course previously offered as AGRN 2124.
\textbf{Credit hours:} 4
\textbf{Contact hours:} Lecture: 3 Lab: 2
\textbf{Levels:} Undergraduate
\textbf{Schedule types:} Lab, Lecture, Combined lecture and lab
\textbf{Department/School:} Plant & Soil Sciences
\textbf{General Education and other Course Attributes:} Natural Sciences

SOIL 3433 Soil Genesis, Morphology, and Classification
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Basic principles dealing with how and why soils differ, their descriptions, geographic distributions and modern classification of soils. Soil genesis and classification a prerequisite to sound land use planning and land management. Course previously offered as AGRN 3433.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lab, Lecture, Combined lecture and lab
\textbf{Department/School:} Plant & Soil Sciences

SOIL 3883 Sustainable Agriculture Concepts and Practice
\textbf{Description:} Principles of sustainable agriculture for improved farm management. Analysis of farming systems for indicators of sustainability.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 2 Other: 1
\textbf{Levels:} Undergraduate
\textbf{Schedule types:} Discussion, Combined lecture & discussion, Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4210 Describing and Interpreting Soils
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Describe and classify soil properties in the field and interpret for suitable agriculture, urban, and other land uses. Course previously offered as AGRN 4210. Offered for fixed 1 credit hour, maximum of 3 credit hours.
\textbf{Credit hours:} 1
\textbf{Contact hours:} Other: 1
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Independent Study
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4213 Precision Agriculture
\textbf{Prerequisites:} MATH 1513, senior standing.
\textbf{Description:} Introduction to the concepts of precision agriculture including analysis of spatial variability, relationships of fertility and crop response, geographical information systems, variable rate technology, optical sensing, global positioning systems, and yield monitoring. Case studies included for detailed analyses. Same course as BAE 4213.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4234 Soil Nutrient Management
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Soil fertility and use of fertilizer materials for conservation, maintenance, and improvement of soil productivity and to minimize environmental concerns. Course previously offered as AGRN 4234.
\textbf{Credit hours:} 4
\textbf{Contact hours:} Lecture: 4
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lab, Lecture, Combined lecture and lab
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4363 Environmental Soil Science
\textbf{Prerequisites:} BIOL 1114 and SOIL 2124.
\textbf{Description:} Re-emphasis of soil science concepts vital in the understanding of processes that are within the realms of the ecological regulator function of the soil; discussions on the role of soil as the foundation of forest, rangeland/pastureland, agricultural, urban and suburban, as well as wetland ecosystems; impact of soil processes on global environmental concerns; soil as the ultimate recipient of waste; impact of soil processes on groundwater and surface water quality. Same course as ENVR 4363. Course previously offered as AGRN 4363.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4463 Soil and Water Conservation
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Assess the importance, quality and quantity of soil and water as natural resources for ecosystems and societies. Principles of soil erosion processes and management practices to decrease erosion in urban, cropland and rangeland systems. Understand the principles of hydrology cycle to improve water use efficiency of precipitation and irrigation resources. Examine resource mismanagement that have resulted in desertification, salinization and deforestation. Course previously offered as AGRN 4463.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4213 Precision Agriculture
\textbf{Prerequisites:} MATH 1513, senior standing.
\textbf{Description:} Introduction to the concepts of precision agriculture including analysis of spatial variability, relationships of fertility and crop response, geographical information systems, variable rate technology, optical sensing, global positioning systems, and yield monitoring. Case studies included for detailed analyses. Same course as BAE 4213.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4234 Soil Nutrient Management
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Soil fertility and use of fertilizer materials for conservation, maintenance, and improvement of soil productivity and to minimize environmental concerns. Course previously offered as AGRN 4234.
\textbf{Credit hours:} 4
\textbf{Contact hours:} Lecture: 4
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lab, Lecture, Combined lecture and lab
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4363 Environmental Soil Science
\textbf{Prerequisites:} BIOL 1114 and SOIL 2124.
\textbf{Description:} Re-emphasis of soil science concepts vital in the understanding of processes that are within the realms of the ecological regulator function of the soil; discussions on the role of soil as the foundation of forest, rangeland/pastureland, agricultural, urban and suburban, as well as wetland ecosystems; impact of soil processes on global environmental concerns; soil as the ultimate recipient of waste; impact of soil processes on groundwater and surface water quality. Same course as ENVR 4363. Course previously offered as AGRN 4363.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences

SOIL 4463 Soil and Water Conservation
\textbf{Prerequisites:} SOIL 2124.
\textbf{Description:} Assess the importance, quality and quantity of soil and water as natural resources for ecosystems and societies. Principles of soil erosion processes and management practices to decrease erosion in urban, cropland and rangeland systems. Understand the principles of hydrology cycle to improve water use efficiency of precipitation and irrigation resources. Examine resource mismanagement that have resulted in desertification, salinization and deforestation. Course previously offered as AGRN 4463.
\textbf{Credit hours:} 3
\textbf{Contact hours:} Lecture: 3
\textbf{Levels:} Graduate, Undergraduate
\textbf{Schedule types:} Lecture
\textbf{Department/School:} Plant & Soil Sciences
SOIL 4470 Problems and Special Study
Prerequisites: Consent of the instructor.
Description: Problems in soil science selected from topics in soil chemistry and fertility, soil physics, soil biology, soil conservation, and soil morphology. Offered for variable credit, 1-3 credit hours, maximum of 12 credit hours.
Credit hours: 1-3
Contact hours: Other: 1
Levels: Graduate, Undergraduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 4483 Soil Microbiology
Prerequisites: SOIL 2124 and BIOL 1114 or consent of instructor.
Description: An overview of microorganisms living in the soil and their activities which are significant to agricultural practices and the environment. No credit for both SOIL 4483 and SOIL 5383. Course previously offered as AGRN 4483.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 4571 Professional Preparation in Plant and Soil Sciences
Prerequisites: Senior standing in plant and soil sciences.
Description: Preparation for professional certification exams and career opportunities in plant and soil sciences. Same course as PLNT 4571.
Credit hours: 1
Contact hours: Lecture: 3
Levels: Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 4683 Soil, Water, and Weather
Prerequisites: SOIL 2124 and PHYS 1114.
Description: Introduction to the physics of the soil-plant-atmosphere continuum. A focus on physical properties of soil and interactions with water and weather in terrestrial ecosystems. Course previously offered as AGRN 4683.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 4893 Soil Chemistry and Environmental Quality
Prerequisites: SOIL 2124 and CHEM 1225.
Description: Chemical and colloidal properties of clays and organic matter in soil systems, including ion exchange, retention, and precipitation; soil acidity and salinity; mineral weathering and formation; oxidation-reduction reactions; trace and toxic elements, water quality, land application of wastes, and soil remediation. Same course as ENVR 4893. Previously offered as SOIL 3893 and AGRN 3893.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate, Undergraduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 5000 Master's Thesis
Prerequisites: Consent of adviser.
Description: Research planned, conducted and reported in consultation with a major professor. 1-6 credits, 6 max total credits under Plan I, and 2 max total credits under Plan II. Offered for variable credit, 1-6 credit hours, maximum of 6 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 5020 Graduate Seminar
Prerequisites: Graduate standing.
Description: Discussion of research philosophy, methods, interpretation, and presentations. Profession development and contributions to the scientific community. Same course as PLNT 5020. Offered for fixed 1 credit hour, maximum of 3 credit hours.
Credit hours: 1
Contact hours: Lecture: 1
Levels: Graduate
Schedule types: Independent Study, Lecture
Department/School: Plant & Soil Sciences

SOIL 5110 Problems and Special Study
Prerequisites: Consent of instructor.
Description: Supervised study of special problems and topics not covered in other graduate courses. Offered for variable credit, 1-4 credit hours, maximum of 12 credit hours.
Credit hours: 1-4
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 5112 Research Methods in Plant and Soil Sciences
Prerequisites: Consent of adviser.
Description: Exploration of various methodologies helpful in field scale research. Application and understanding biometry as it relates to research result interpretation. Course previously offered as SOIL 5111.
Credit hours: 2
Contact hours: Lecture: 2
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 5120 Teaching Practicum in Plant and Soil Sciences
Description: College-level teaching experience under the mentorship of a faculty member who assists in planning of class activities, provides guidance in teaching-related projects, observes classes and provides feedback regarding course delivery and classroom management.
Credit hours: 1-3
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences
SOIL 5131 Professional Development Colloquium in Plant and Soil Sciences
Description: Professional preparation of graduate students for future careers. Discussions on topics related to the application process and successful careers in the academic, private industry and government sectors. Concerns of international students, career-life balance and other post-graduate school career issues are discussed.
Credit hours: 1
Contact hours: Other: 1
Levels: Graduate
Schedule types: Discussion
Department/School: Plant & Soil Sciences

SOIL 5223 Soil Chemical Processes and Impact on Environmental Quality
Prerequisites: SOIL 4893 and CHEM 2113 or CHEM 3324 or equivalent.
Description: A comprehensive study of chemical processes applied to fate and transport of contaminants and agricultural productivity. Chemical and physical properties of soil minerals as they pertain to solution and surface chemistry. Nutrient and contaminant availability and speciation as dictated by ion exchange, precipitation/dissolution, and adsorption reactions. Review of current research in soil and environmental chemistry literature. Course previously offered as SOIL 5224.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 5230 Research
Prerequisites: Consent of a faculty member supervising the research.
Description: Supervised independent research on selected topics. Offered for variable credit, 1-4 credit hours, maximum of 8 credit hours.
Credit hours: 1-4
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 5353 Advanced Soil Genesis and Classification
Prerequisites: SOIL 3433.
Description: Processes and factors of soil formation. Comparison of world soil morphology and classification systems. Course previously offered as AGRN 5353.
Credit hours: 3
Contact hours: Lecture: 2 Lab: 2
Levels: Graduate
Schedule types: Lab, Lecture, Combined lecture and lab
Department/School: Plant & Soil Sciences

SOIL 5383 Advanced Soil Microbiology
Prerequisites: SOIL 2124 and BIOL 1114 or consent of instructor.
Description: A comprehensive overview of microorganisms living in the soil and their activities which are of agricultural and environmental significance. Provide experience in analytical skills related to soil microbial processes. No credit for both SOIL 4483 and SOIL 5383.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 5483 Soil Biodegradation and Bioremediation
Prerequisites: SOIL 4483.
Description: A comprehensive overview of microorganisms living in soil and their activities of agricultural and environmental significance, emphasizing their roles in improving soil quality, and biodegradation and bioremediation of soil.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 5583 Soil Physics Measurement Techniques
Prerequisites: SOIL 4683.
Description: A comprehensive overview of microorganisms living in soil and their activities of agricultural and environmental significance, emphasizing their roles in improving soil quality, and biodegradation and bioremediation of soil.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 6000 Doctoral Thesis
Prerequisites: Consent of instructor.
Description: Independent research to be conducted and reported with the supervision of a major professor as partial requirement for the PhD degree. Offered for variable credit, 1-6 credit hours, maximum of 36 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 6010 Advanced Topics and Conference
Prerequisites: MS degree.
Description: Supervised study of advanced topics. A reading and conference course designed to acquaint the advanced student with fields not covered in other courses. Offered for variable credit, 1-6 credit hours, maximum of 12 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences

SOIL 6013 Soil-Plant Nutrient Cycling and Environmental Quality
Prerequisites: SOIL 4234 or equivalent.
Description: Theory and application of soil plant relationships in production and non-production environments. Nutrient cycling, mass balance, soil nutrient supply and plant response. Methods to reduce the impact of nutrients on environmental quality, soil-plant buffering and response models. Course previously offered as AGRN 5813.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

SOIL 6017 Independent Study
Prerequisites: Consent of instructor.
Description: Independent study of advanced topics. A reading and conference course designed to acquaint the advanced student with fields not covered in other courses. Offered for variable credit, 1-6 credit hours, maximum of 36 credit hours.
Credit hours: 1-6
Contact hours: Other: 1
Levels: Graduate
Schedule types: Independent Study
Department/School: Plant & Soil Sciences
SOIL 6583 Soil Physics Theory
Prerequisites: SOIL 4683 or equivalent and MATH 2233 or equivalent.
Description: Theoretical understanding and modeling skills required to analyze and predict mass and energy transport in the soil-plant-atmosphere continuum. Application of analytical and numerical models for diverse transport phenomena including water, heat, and solute transport through soil.
Credit hours: 3
Contact hours: Lecture: 3
Levels: Graduate
Schedule types: Lecture
Department/School: Plant & Soil Sciences

Undergraduate Programs

- Agronomy (AGRN), Minor (http://catalog.okstate.edu/agricultural-sciences-natural-resources/plant-soil-sciences/agronomy-minor)
- Horticulture (HORT), Minor (http://catalog.okstate.edu/agricultural-sciences-natural-resources/plant-soil-sciences/horticulture-minor)
- Plant and Soil Sciences: Crop Production and Management, BSAG (http://catalog.okstate.edu/agricultural-sciences-natural-resources/plant-soil-sciences/crop-production-management-bsag)
- Soil Science (SOIL), Minor (http://catalog.okstate.edu/agricultural-sciences-natural-resources/plant-soil-sciences/soil-science-minor)

Graduate Programs

Programs of course work and research are offered leading to the Master of Science degree in plant and soil sciences. A Doctor of Philosophy degree can be attained in Crop Science or Soil Science. Specific programs are available in the areas of plant breeding and molecular biology, biotechnology, bioenergy, environmental remediation, forage and pasture management, weed science, crop physiology, crop management, conservation cropping systems, soil morphology and genesis, soil microbiology, soil fertility and plant nutrition, soil physics, soil-water management, soil chemistry, soil and water quality, and waste management. Applicants should indicate their specific area of interest upon application. Plant and soil sciences faculty also serve on advisory committees for the Environmental Science and Plant Science interdisciplinary degree programs.

The graduate programs in plant and soil sciences prepare individuals for successful careers in a variety of areas including research, teaching, environmental sciences, waste management, farming and ranching, extension education, agricultural business, and all aspects of crop production.

Prerequisites

Admission to the graduate program requires a BS degree in plant and soil sciences, agronomy or a closely related field. Applicants should have completed basic courses in plant and soil sciences, agronomy, biology, chemistry and mathematics required of undergraduate majors.

Deficiencies in fundamental course requirements will be met by the student under the direction of the student's advisory committee. Applicants must be accepted by an adviser in an appropriate discipline prior to official admission.

Degree Requirements

Students must follow approved plans of study that meet the minimum University and program requirements for the respective degrees they are pursuing.

The Master of Science degree in plant and soil sciences may be earned by using the thesis option. This plan requires a minimum of 30 credit hours of course work, including six credit hours of PLNT or SOIL 5000 Master's Thesis.

The degree plans of study for the Doctor of Philosophy degree in crop science and soil science are developed individually for each candidate and must be approved by the student's advisory committee. Doctoral programs in crop science and soil science require 60 credit hours beyond the MS degree, including a minimum of 15 credit hours of PLNT or SOIL 6000 Doctoral Thesis. All students must meet certain requirements in basic disciplines such as statistics, mathematics, botany, and chemistry. Study of a foreign language is not required, but can be incorporated if the student and advisory committee feel that it is desirable.

Faculty

Jeff Edwards, PhD—Professor and Head
Regents Professors: Brett F. Carver, PhD; Donald S. Murray, PhD; William R. Raun, PhD; Hailin Zhang, PhD
Professors: Brian J. Carter, PhD; Shiping Deng, PhD; Jeffrey T. Edwards, PhD; Yangi Wu, PhD; Liuling Yan, PhD
Associate Professors: Michael P. Anderson, PhD; D. Brian Arnall, PhD; V. Gopal Kakani, PhD; Tyson E. Ochsner, PhD; Million Tadege, PhD; Jason G. Warren, PhD
Assistant Professors: Sergio M. Abit, Jr., PhD; Phil Alderman, PhD; Beatrix J. Haggard, PhD; Josh Lofton, PhD; Misha Manuchehri, PhD; Alex Rocateli, PhD